K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2021

23 tháng 4 2021

Đặt t=x^2>=0(1)

(1)<=>12t^2-5t+30=0

∆=(-5)^2-4.12.30=-1415<0

Vậy phương trình vô nghiệm 

6 tháng 2 2018

Ta thấy x = 0 ko phải là nghiệm của pt => x khác 0

Chia cả 2 vế của pt cho x^2 ta được :

x^2+5x-12+5/x+1/x^2 = 0

<=> (x^2+1/x^2)+5.(x+1/x) - 12 = 0

Đặt x+1/x = a => x^2+1/x^2 = a^2-2

pt trở thành :

a^2-2+5a-12 = 0

<=> a^2+5a-14 = 0

<=> (a^2-2a)+(7a-14) = 0

<=> (a-2).(a+7) = 0

<=> a=2 hoặc a=-7

<=> x+1/x = 2 hoặc x+1/x = -7

Đến đó bạn tự nhân x vào 2 vế rùi chuyển sang mà giải nha

Tk mk nha

11 tháng 2 2023

Đặt x+1/x = a => x^2+1/x^2 = a^2-2

Bạn ơi khúc này bạn có thể nói rõ hơn 1 tí được không ạ

Cảm ơn bạn💞

4 tháng 12 2018

- đợi mk 6s hoàn thiện

4 tháng 12 2018

x⁴ + 5x³ + 12x² + 20x + 16 = 0 

Nhận xét: vì 16/1 = (20/5)² ⇒ đây là pt đối xứng. Vì x = 0 không là nghiệm của pt nên chia 2 vế của pt cho x²⇒pt trở thành: 

⇔x² + 5x + 12+ 20/x + 16/x² = 0 

⇔(x²+ 16/x²) +5(x+4/x) + 12 = 0 

đặt x+4/x = t ⇒ t² = x²+ 8 + 16/x² 

học tốt!

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a)      \(2{x^2} - 3x + 1 > 0\)

Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)

Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S= \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)

b)     \({x^2} + 5x + 4 < 0\)

Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x =  - 1\) và \(x =  - 4.\)

Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

Tam thức \(f\left( x \right) =  - 3{x^2} + 12x - 12 =  - 3\left( {{x^2} - 4x + 4} \right) =  - 3{\left( {x - 2} \right)^2} \le 0\)

Do đó 

\( - 3{x^2} + 12x - 12 \ge 0 \Leftrightarrow  - 3{x^2} + 12x - 12 = 0 \Leftrightarrow  - 3{\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2.\)

Tập nghiệm của bất phương trình là: \(S = \left( { 2} \right).\)

d)     \(2{x^2} + 2x + 1 < 0.\)

Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta  =  - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)

\( \Rightarrow \) bất phương trình vô nghiệm

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a = 2 > 0\) và \(\Delta  = {\left( { - 5} \right)^2} - 4.2.3 = 1 > 0\)

=> \(2{x^2} - 5x + 3 = 0\) có 2 nghiệm phân biệt \({x_1} = 1,{x_2} = \frac{3}{2}\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} - 5x + 3\) mang dấu “+” là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \(2{x^2} - 5x + 3 > 0\) là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)

b) Ta có \(a =  - 1 < 0\) và \(\Delta ' = {\left( { - 1} \right)^2} - \left( { - 1} \right).8 = 9 > 0\)

=> \( - {x^2} - 2x + 8 = 0\)có 2 nghiệm phân biệt \({x_1} =  - 4,{x_2} = 2\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - {x^2} - 2x + 8\) mang dấu “-” là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \( - {x^2} - 2x + 8 \le 0\) là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)

c)

Ta có \(a = 4 > 0\) và \(\Delta ' = {\left( { - 6} \right)^2} - 4.9 = 0\)

=> \(4{x^2} - 12x + 9 = 0\) có nghiệm duy nhất \(x = \frac{3}{2}\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(4{x^2} - 12x + 9\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(4{x^2} - 12x + 9 < 0\) là \(\emptyset \)

d) \( - 3{x^2} + 7x - 4 \ge 0\)

Ta có \(a =  - 3 < 0\) và \(\Delta  = {7^2} - 4.\left( { - 3} \right).\left( { - 4} \right) = 1 > 0\)

=> \( - 3{x^2} + 7x - 4 = 0\) có 2 nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{4}{3}\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 7x - 4\) mang dấu “+” là \(\left[ {1;\frac{4}{3}} \right]\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 7x - 4 \ge 0\) là \(\left[ {1;\frac{4}{3}} \right]\)

5 tháng 3 2022

1.\(\left(x+2\right)\left(2x-3\right)=x^2-4\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3-x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

2.\(x^2+3x+2=0\)

\(\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

3.\(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

4.\(x^3+x^2-12x=0\)

\(\Leftrightarrow x\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x\left(x+4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=3\end{matrix}\right.\)

a: \(\Leftrightarrow\left(x+2\right)\left(2x-3\right)-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3-x+2\right)=0\)

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

b: =>(x+1)(x+2)=0

=>x=-1 hoặc x=-2

c: =>(2x+3)(x+1)=0

=>x=-1 hoặc x=-3/2

d: =>x(x+4)(x-3)=0

hay \(x\in\left\{0;-4;3\right\}\)