Phân tích đa thức sau thành nhân tử: \(x^2-6x+25\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kết quả 2x(2x – 3). b) Kết quả xy( x 2 – 2xy + 5).
c) Kết quả 2x(x + 1)(x + 4). d) Kết quả 2 5 ( y − 1 ) ( x + y ) .
\(=x\left(x-6\right)+y\left(x-6\right)=\left(x+y\right)\left(x-6\right)\)
Đa thức này không phân tích được thành nhân tử
Nó phân tích được khi đề là: \(x^2-6y-y^2-9\) hoặc \(x^2-6x-y^2+9\)
\(=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)
\(x^3-3x^2+6x-4\)
\(=x^3-2x^2+4x-x^2+2x-4\)
\(=\left(x^3-2x^2+4x\right)-\left(x^2-2x+4\right)\)
\(=x\left(x^2-2x+4\right)-\left(x^2-2x+4\right)\)
\(=\left(x-1\right)\left(x^2-2x+4\right)\)
x^3 - 3x^2 + 6x - 4
<=> x^3-3x^2+3x-1+3x-3
<=>(x-1)^3+3(x-1)
<=>(x-1)+((x-1)^2+3)
<=>(x-1)+(x^2-2x+4)
\(x^2-2xy+y^2-6x+6y=\left(x-y\right)^2-6\left(x-y\right)=\left(x-y\right)\left(x-y-6\right)\)
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
\(4x^4+4x^2+1=\left(2x^2+1\right)^2\)
\(9x^4-6x^2+1=\left(3x^2-1\right)^2\)
\(\dfrac{x^2}{9}-\dfrac{2}{3}x+1=\left(\dfrac{x}{3}+1\right)^2\)
\(x^2-25=\left(x-5\right)\left(x+5\right)\)
= x^2 - x - 5x +25 = x(x-1) - 5(x-1) = (x-5)(x-1)