phân tích đa thức thành nhân tử :
x5 - x4 + 3x3 + 3x2 - x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Câu 1
a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)
b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)
\(3x^3+3x^2-3x-9=3\left(x^3+x^2-x-3\right)\)
Check lại đề hộ mình nhé:vv
a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$
$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$
$=(x^2+x+1)(x^5-x^4+x^3-x+1)$
c.
$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2$
$=(x^4+1-x^2)(x^4+1+x^2)$
$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$
$=(x^4-x^2+1)[(x^2+1)^2-x^2]$
$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$
d.
$x^3-5x+8-4=x^3-5x+4$
$=x^3-x^2+x^2-x-(4x-4)$
$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$
e.
$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$
$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$
$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^2+x)+1]$
$=(x^2+x+1)(x^3-x+1)$
a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b: \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
c: \(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
b) \(25-x^2+14xy-49y^2\)
\(=25-\left(x^2-14xy+49y^2\right)\)
\(=25-\left[x^2-2\cdot7y\cdot x+\left(7y\right)^2\right]\)
\(=25-\left(x-7y\right)^2\)
\(=5^2-\left(x-7y\right)^2\)
\(=\left[5-\left(x-7y\right)\right]\left[5+\left(x-7y\right)\right]\)
\(=\left(5-x+7y\right)\left(5+x-7y\right)\)
c) \(x^5+x^4+1\)
\(=x^5+x^4+1+x^3-x^3\)
\(=\left(x^5+x^4+x^3\right)+\left(1-x^3\right)\)
\(=x^3\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^3+\left(1-x\right)\right]\)
\(=\left(x^2+x+1\right)\left(x^3+1-x\right)\)
b: 25-x^2+14xy-49y^2
=25-(x-7y)^2
=(5-x+7y)(5+x-7y)
c: =x^5+x^4+x^3+1-x^3
=x^3(x^2+x+1)+(1-x)(x^2+x+1)
=(x^2+x+1)(x^3+1-x)
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
`@`\(P\left(x\right)=3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\)
\(P\left(x\right)=\left(3x^5-x^5\right)+x^4+\left(-5x^2-x^2\right)+\left(-2x+x\right)+1\)
\(P\left(x\right)=2x^5+x^4-6x^2-x+1\)
`@`\(Q\left(x\right)=-5-3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)
\(Q\left(x\right)=\left(-3x^5-x^5\right)-3x^4-3x^3+3x^2+\left(2x-2x\right)-5\)
\(Q\left(x\right)=-4x^5-3x^4-3x^3+3x^2-5\)
`@`\(P\left(x\right)+Q\left(x\right)=\left(2x^5+x^4-6x^2-x+1\right)+\left(-4x^5-3x^4-3x^3+3x^2-5\right)\)
\(=-2x^5-2x^4-3x^3-3x^2-x-4\)