K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

3x + x3 = 121

Ta đặt phép tính :

3x

x3

121

Vì x + 3 = 1 => x = 8

Vậy ta có phép tính hoàn chỉnh như sau :

38 + 83 = 121

24 tháng 9 2016

\(\text{6x = 121 x = 121: 6 V x = 21 }\)

a: \(\left(x^3-x^2+x\right)\left(121-25y^2-10y\right)-\left(x^3-x^2+x\right)-\left(121-25y^2-10y\right)+1\)

\(=\left(x^3-x^2+x\right)\left(120-25y^2-10y\right)-\left(120-25y^2-10y\right)\)

\(=\left(120-25y^2-10y\right)\left(x^3-x^2+x-1\right)\)

\(=-\left[\left(25y^2+10y+1\right)-121\right]\left[x^2\left(x-1\right)+\left(x-1\right)\right]\)

\(=-\left(5y-10\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)

\(=-5\left(y-2\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)

b: \(x^4-14x^3+71x^2-154x+120\)

\(=x^4-5x^3-9x^3+45x^2+26x^2-130x-24x+120\)

\(=\left(x-5\right)\left(x^3-9x^2+26x-24\right)\)

\(=\left(x-5\right)\left(x^3-4x^2-5x^2+20x+6x-24\right)\)

\(=\left(x-5\right)\left(x-4\right)\left(x^2-5x+6\right)\)

\(=\left(x-5\right)\left(x-4\right)\left(x-3\right)\left(x-2\right)\)

`@` `\text {Ans}`

`\downarrow`
\(\left[\dfrac{14}{9}\div\dfrac{2}{121}\right]\times\dfrac{3}{77}\)

`=`\(\dfrac{847}{9}\times\dfrac{3}{77}\)

`=`\(\dfrac{11}{3}\times\dfrac{1}{1}\)

`=`\(\dfrac{11}{3}\)

29 tháng 1 2023

\(\dfrac{22}{5}\times\dfrac{6}{121}\times\dfrac{11}{4}\times\dfrac{3}{5}\times\dfrac{1}{3}\times\dfrac{5}{4}\)

\(=\left(\dfrac{22}{5}\times\dfrac{5}{4}\right)\times\left(\dfrac{6}{121}\times\dfrac{11}{4}\right)\times\left(\dfrac{3}{5}\times\dfrac{1}{3}\right)\)

\(=\dfrac{11}{2}\times\dfrac{3}{22}\times\dfrac{1}{5}\)

\(=\dfrac{3}{20}\)

29 tháng 1 2023

\(=\dfrac{22\times6\times11\times3\times1\times5}{5\times121\times4\times5\times3\times4}=\dfrac{11\times2\times6\times11\times1}{11\times11\times4\times5\times4}=\dfrac{2\times6\times1}{4\times5\times4}=\dfrac{18}{100}=\dfrac{9}{50}\)

a: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)

b:\(=\dfrac{x^3+x^2+3x^2+3x+5x+5}{x+1}=x^2+3x+5\)

c:\(=\dfrac{x^3-3x^2-7x+2x^2-6x-14}{x^2-3x-7}=x+2\)

d: \(=\dfrac{x^2\left(x+5\right)+5x+25-25}{x+5}=x^2+5-\dfrac{25}{x+5}\)

27 tháng 4 2017

Chọn A

11 tháng 7 2017

Ta có : abc4 - 4abc = 1872

=> abc x 10 + 4 - 4000 - abc = 1872

=> abc x 9 - 3996 = 1872

=> abc x 9 = 5868

=> abc = 652

11 tháng 7 2017

cảm ơn anh nhìu nha vừa mới đăng xong đã có câu trả lời rùi . THANK YOU , VERY MUCH

a. (3x - 1)2 - (x + 3)2 = 0

\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)

\(\Leftrightarrow4x+2=0\)  hoặc  \(2x-4=0\)

1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)

2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

S=\(\left\{-\dfrac{1}{2};2\right\}\)

 

b. \(x^3=\dfrac{x}{49}\)

\(\Leftrightarrow49x^3=x\)

\(\Leftrightarrow49x^3-x=0\)

\(\Leftrightarrow x\left(49x^2-1\right)=0\)

\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc  \(7x+1=0\) hoặc \(7x-1=0\)

1. x=0

2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)

3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)