1,TÌM x,y để biểu thức sau nhận giá trị âm
a, 2y2-4y
b,(3y+1).(4y-3)
2,tìm x để biểu thức sau nhận giá trị dương
(2x+3).(3x-5)
GIẢI GIÚP MK VS MK ĐANG CẦN GẤP
AI GIẢI NHANH MK LIKE CHO NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(x^2+5x=x\left(x+5\right)\)
Để biểu thức này âm thì \(x\left(x+5\right)< 0\)
hay -5<x<0
b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)
\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)
Bài 1:
a) \(x^2+5x=x\left(x+5\right)< 0\) (1)
Nhận thấy: \(x< x+5\)
nên từ (1) \(\Rightarrow\) \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)
Vậy.....
b) \(3\left(2x+3\right)\left(3x-5\right)< 0\)
TH1: \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\) vô lí
Vậy \(-\frac{3}{2}< x< \frac{5}{3}\)
Bài 2:
a) \(2y^2-4y=2y\left(y-2\right)>0\)
TH1: \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)
TH2: \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)
Vậy \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)
b) \(5\left(3y+1\right)\left(4y-3\right)>0\)
TH1: \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)
TH2: \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)
Vậy \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)
a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên
và x2 luôn tự nhiên => 5x âm
=> GTTĐ của x2 < GTTĐ của 5x
=> x < 5
=> x thuộc {4; 3; 2; 1;....}
Vậy....
nhận giá trị âm tức là giá trị của biểu thức nhỏ hơn 0 và ngược lại!
a) \(15-3x< 0\)
\(\Leftrightarrow-3x< -15\)
\(\Leftrightarrow3x>5\)
b) \(27x+9< 0\)
\(\Leftrightarrow27x< -9\)
\(\Leftrightarrow x< -\frac{1}{3}\)
c) \(2y^2-4x< 0\)
\(\Leftrightarrow2\cdot\left(y^2-2x\right)< 0\)
\(\Leftrightarrow y^2-2x< 0\)
......
4a)
Ta có :
x2 + 5x > 0
(=) x2 > 0 và 5x > 0
muốn x2 > 0 (=) x \(\in\) |R (1)
Lại có : 5x > 0 (=) x > 0 (2)
Từ (1) và (2)
=) muốn x2 + 5x > 0 thì x phải > 0
4b)
Ta có :
3 . ( 2x + 3 ) . ( 3x - 5 ) > 0
TH1 : 3 . ( 2x + 3 ) > 0
=) 2x + 3 > 0
=) 2x > -3
=) x > \(\frac{-3}{2}\)
TH2 : 3x - 5 > 0
=) 3x > 5
=) x > \(\frac{5}{3}\)
Vậy \(\frac{-3}{2}\) < x < \(\frac{5}{3}\) thì 3 . ( 2x + 3 ) . ( 3x - 5 ) > 0