K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

\(B=\dfrac{4x^2-2x+1}{x^2}=\dfrac{3x^2+\left(x^2-2x+1\right)}{x^2}=3+\dfrac{\left(x-1\right)^2}{x^2}\ge3\)

\(B_{min}=3\Leftrightarrow x=1\)

17 tháng 4 2022

Thanks

1 tháng 10 2019

a) \(A=x^2-2x+3\) 

\(A=x^2-2x+1+2\)

\(A=\left(x-1\right)^2+2\ge2\)

=> GTNN của A = 2

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy GTN của A = 2 <=> x = 1

1 tháng 10 2019

\(B=x^2+4x+3\)

\(B=x^2+4x+4-1\)

\(B=\left(x+2\right)^2-1\ge-1\)

=> GTNN của B = -1

\(\Leftrightarrow\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy GTNN của B = -1 <=> x = -2

11 tháng 9 2016

a) \(A=x^2-2x+5\)

\(A=x^2-2x+1+4\)

\(A=\left(x-1\right)^2+4\)

Có:  \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Dấu '=' xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

Vậy: \(Min_A=4\) tại \(x=1\)

b) \(B=x^2+x+1\)

\(B=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu '=' xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Vậy: \(Min_B=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)

11 tháng 9 2016

c) \(C=4x-x^2+3\)

\(C=-x^2+4x-4+8\) 

\(C=8-\left(x^2-4x+4\right)\)

\(C=8-\left(x-2\right)^2\)

Có: \(\left(x-2\right)^2\ge0\Rightarrow8-\left(x-2\right)^2\le8\)

Dấu '=' xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy: \(Max_C=8\) tại \(x=2\)

25 tháng 9 2018

4, \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(=5x^2+5\ge5\)

Dấu "=" xảy ra khi x=0

5,\(A=4-x^2+2x=5-\left(x^2-2x+1\right)=5-\left(x-1\right)^2\le5\)

Dấu "=" xảy ra khi x=1

\(B=4x-x^2=4-\left(x^2-4x+4\right)=4-\left(x-2\right)^2\le4\)

Dấu "=" xảy ra khi x=2

25 tháng 9 2018

C.ơn bạn nhen 

12 tháng 7 2017

       x2-4x+4=4x2-12x+9

\(\Leftrightarrow\)3x2-8x+5=0

\(\Leftrightarrow\)3x2-3x-5x+5=0

\(\Leftrightarrow\)3x(x-1)-5(x-1)=0

\(\Leftrightarrow\)(x-1)(3x-5)=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)

b,x2-2x-25=0

\(\Leftrightarrow\)(x-1)2-26=0

\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)

2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4

b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017

mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory

12 tháng 7 2017

Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3 

13 tháng 7 2017

Bài 1: 

a)  \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)

\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)

VẬy tập nghiệm của phương trình là : S={11/3 ; 7}

b)   Nếu x^2 -2x  =25 thì lẻ lắm . Tớ nghĩ phải là :  x^2 -2x  = 24 

Bài 2 : 

a)  \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\)  hay \(A\ge4\)

Vậy GTNN của A là 4  khi x = 1        ( hay x-1 =0 )

b)  \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)

Vì \(\left(2x-1\right)^2\ge0\)     và \(\left(y+1\right)^2\ge0\)   nên   \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)

HAy \(B\ge-2017\)    Vậy GTNN của B là -2017  khi x=1/2   và y =  -1

11 tháng 1 2017

Bài 1:

\(A=4x^2+4x-1\)

\(=4x^2+4x+1-2\)

\(=\left(2x+1\right)^2-2\ge-2\)

Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)

Bài 2:

Bình phương 2 vế 

\(\sqrt{\left(3x^2-4x+3\right)^2}=\left(1-2x\right)^2\)

\(\Leftrightarrow3x^2-4x+3=4x^2-4x+1\)

\(\Leftrightarrow2-x^2\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2}\) (tm)

\(x=-\sqrt{a}\Rightarrow-\sqrt{2}=-\sqrt{a}\Rightarrow a=2\)

11 tháng 1 2017

4x^2+4x-1

=4x^2+4x+1-2

=(2x+1)^2-2

=> (2x+1)^2\(\ge\)0 voi moi x

=> (2x+1)^2 \(\ge\)2

=> GTNN la 2