K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Ta có: 2000/2001>1/2 ;  2001/2002>1/2

=>A=1/2+1/2=1=>A>1

B=2000+2001/2001+2002=4001/4003<1

A>1;B<1

=>A>B

Vậy A>B

29 tháng 4 2016

Ta có: 2000/2001>1/2 ;  2001/2002>1/2

=>A=1/2+1/2=1=>A>1

B=2000+2001/2001+2002=4001/4003<1

A>1;B<1

=>A>B

Vậy A>B

24 tháng 5 2016

2000/2001<1

2001/2002<1

2002/2003<1

...

2015/2016<1

=>2000/2001+2001/2002+2002/2003+2003/2004+...+2015/2016<1+1+1+1+1+...+1=15

Vậy...   

24 tháng 5 2016

Ta có:

2000/ 2001 < 1

2001/2002 < 1

..................

2015/ 2016<1

=> 200/2001 + 2001/202+...+ 2015/2016 < 1 + 1+1 +1+...+1( 15 số hạng)

=> 200/2001 + 2001/202+...+ 2015/2016< 1 x 15 = 15

17 tháng 4 2017

So sánh hai biểu thức A và B biết rằng:

[Math Processing Error]A=20002001+20012002

[Math Processing Error]B=2000+20012001+2002

Hướng dẫn làm bài:

Ta có: [Math Processing Error]20002001>20002001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)

[Math Processing Error]20012002>20012001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)

Cộng vế với vế ta được:

[Math Processing Error]20002001+20012002>20002001+2002+20012001+2002

Vậy A > B

30 tháng 3 2017

\(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2002}+\dfrac{2001}{2002}\)

\(=\dfrac{2000+2001}{2002}>\dfrac{2000+2001}{2001+2002}\)

nên \(A>B\)

12 tháng 5 2017

Ta có : \(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)

\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)

\(\Rightarrow\) \(\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000+2001}{2001+2002}\)

Vậy A > B

11 tháng 5 2023

Ta có:
\(\dfrac{2001}{2002}< 1\)
\(1< \dfrac{2021}{2003}\)
\(\Rightarrow\dfrac{2001}{2002}< \dfrac{2021}{2003}\)

#Đang Bận Thở

11 tháng 5 2023

a) 2001 : 2002

b) 2021 : 2003

26 tháng 7 2016

Ta có: 1/3 = 13/39

=> 13/38 > 13/39 = 1/3

 1/3 = 29/87

=> 29/88 <29/87=1/3

 Vì 13/38 >1/3 > 29/88 nên -13/38 < -1/3 < -29/88

 Vậy -13/38 < -29/88

 

26 tháng 7 2016

b)Qui đồng mẫu số:

a/b = a(b+2001) / b(b+2001) = ab + 2001a /  b(b+2001)

a+2001 / b + 2001  =  (a+2001)b / (b + 2001)b  = ab + 2001b / b(b+2001) 

Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.

So sánh ab + 2001a với ab + 2001b

- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai

=> a/b < a+2001/b+2001

- Nếu a = b => hai phân số bằng nhau = 1

- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai

=> a/b > a+2001/ b +2001

So sánh:

\(\frac{5}{6}=\frac{5\times4}{6\times4}=\frac{20}{24}\)

\(\frac{7}{8}=\frac{7\times3}{8\times3}=\frac{21}{24}\)

Mà \(\frac{20}{24}< \frac{21}{24}\) nên \(\frac{5}{6}< \frac{7}{8}\)

Cộng phân số:

\(\frac{9}{4}+\frac{3}{5}\)

\(=\frac{45}{20}+\frac{12}{20}\)

\(=\frac{57}{20}\)

16 tháng 2 2022

TL:

\(\dfrac{5}{6}< \dfrac{7}{8}\) 

\(\dfrac{9}{4}+\dfrac{3}{5}\) = \(\dfrac{57}{20}\) 

-HT-

Nguyen

25 tháng 9 2021

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}=0\)

<=> \(\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)=0\)

<=> \(\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

<=> \(\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

<=> x + 2004 = 0

<=> x = -2004

(Bn nhớ thêm kết quả là 0 vào sau nữa nha)

25 tháng 9 2021

camon nhok=))

5 tháng 10 2021

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)

\(\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)\)

\(x+2014=0\)

\(x=-2014\)

5 tháng 10 2021

\(\Rightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\\ \Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\\ \Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\\ \Rightarrow x=-2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)