Giải phương trình : a) (x^2+x+1)(x^2+x+2)=12
b) x^3+5x^2-10x-8=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:=>3x=15
=>x=5
b: =>8-11x<52
=>-11x<44
=>x>-4
c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)
\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)
BPT <=> -3x2+15x-12>0
<=> x2-5x+4<0
<=> (x-1)(x-4)<0
<=> \(\hept{\begin{cases}x-1>0\\x-4< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\x-4>0\end{cases}}\)(loại)
<=> 1<x<4
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
a: =>-x+2x=3-7
=>x=-4
b: =>6x+2+2x-5=0
=>8x-3=0
hay x=3/8
c: =>5x+2x-2-4x-7=0
=>3x-9=0
hay x=3
d: =>10x2-10x2-15x=15
=>-15x=15
hay x=-1
`a,3x^2+7x+2=0`
`<=>3x^2+6x+x+2=0`
`<=>3x(x+2)+x+2=0`
`<=>(x+2)(3x+1)=0`
`<=>x=-2\or\x=-1/3`
d) Ta có: (x-1)(x+2)=70
\(\Leftrightarrow x^2+2x-x-2-70=0\)
\(\Leftrightarrow x^2+x-72=0\)
\(\Leftrightarrow x^2+9x-8x-72=0\)
\(\Leftrightarrow x\left(x+9\right)-8\left(x+9\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=8\end{matrix}\right.\)
Vậy: S={8;-9}
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x+1\right)^2+\left(x^2+x+1\right)-12=0\)
\(\Leftrightarrow\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-12=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1-3\right)+ 4\left(x^2+x+1-3\right)=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+5\right)=0\)
\(\Leftrightarrow x^2+x+4=0\) hay \(x^2+x-2=0\)
\(\Leftrightarrow x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{15}{4}=0\) hay \(x^2-x+2x-2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) (pt vô nghiệm) hay\(x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=1\) hay \(x=-2\)
-Vậy \(S=\left\{1;-2\right\}\)
b) \(x^3+5x^2-10x-8=0\)
\(\Leftrightarrow x^3-2x^2+7x^2-14x+4x-8=0\)
\(\Leftrightarrow x^2\left(x-2\right)+7x\left(x-2\right)+4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+7x+4\right)=0\)
\(\Leftrightarrow x=2\) hay \(x^2+2.\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{33}{4}=0\)
\(\Leftrightarrow x=2\) hay \(\left(x+\dfrac{7}{2}\right)^2-\dfrac{33}{4}=0\)
\(\Leftrightarrow x=2\) hay \(\left(x+\dfrac{7}{2}+\dfrac{\sqrt{33}}{2}\right)\left(x+\dfrac{7}{2}-\dfrac{\sqrt{33}}{2}\right)=0\)
\(\Leftrightarrow x=2\) hay \(x=\dfrac{-7-\sqrt{33}}{2}\) hay \(x=\dfrac{-7+\sqrt{33}}{2}\)
-Vậy \(S=\left\{2;\dfrac{-7-\sqrt{33}}{2};\dfrac{-7+\sqrt{33}}{2}\right\}\)