Cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BD = BA, từ D vẽ đường thẳng vuông góc BC cắt AC tại E và tia BA tại F.
a) Chứng minh: ∆ABE = ∆DBE và so sánh đoạn EF với đoạn ED.
b) Chứng minh: ∆ CEF cân
c) Gọi M là trung điểm CF. Chứng minh: B, E, M thẳng hàng.
Vẽ hình giúp mình luôn nha mng :33
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
=>ED=EA
mà EA<EF
nên ED<EF
b: Xét ΔEAF vuông tại A và ΔEDC vuông tại D có
EA=ED
góc AEF=góc DEC
=>ΔEAF=ΔEDC
=>EF=EC
=>ΔEFC cân tại E
c: BA+AF=BF
BD+DC=BC
mà BA=BD và AF=DC
nên BF=BC
=>ΔBFC cân tại B
mà BM là trung tuyến
nên BM là phân giác của góc FBC
=>B,E,M thẳng hàng