Phân tích đa thức thành nhân tử: 6x^4+y^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt y=x2+1
=>y2=(x2+1)2
y2=x4+2x2+1
đặt P(x)=x^4+6x^3+11x^2+6x+1
=x4+2x2+1+6x3+6x+9x2
=x4+2x+1+6x(x2+1)+9x2
thay y2=x4+2x2+1 và y=x2+1 ta được
Q(y)=y2+6xy+9x2
=(y+3x)2
thay y=x2+1 ta được:
(x2+3x+1)2
vậy x^4+6x^3+11x^2+6x+1=(x2+3x+1)2
\(x^4+6x^3+7x^2-6x+1\)
\(=x^4+6x^3+9x^2-2x^2-6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2-2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x\right)^2-2\left(x^2+3x\right).1+1^2\)
\(=\left(x^2+3x-1\right)^2\)
Chúc bạn học tốt.
\(x^4+6x^3+7x^2-6x+1\)
\(=x^4+6x^3+9x^2-2x^2-6x+1\)
\(=x^2\left(x+3\right)^2-2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1=\left(x^2+3x-1\right)^2\)
\(=x^4-x^3+3x^3-3x^2+3x^2-3x+9x-9\\ =\left(x-1\right)\left(x^3+3x^2+3x+9\right)\\ =\left(x-1\right)\left(x+3\right)\left(x^2+3\right)\)
\(x^4+2x^3+6x-9=x^3\left(x-1\right)+3x^2\left(x-1\right)+3x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+3x+9\right)\)
\(=\left(x-1\right)\left[x^2\left(x+3\right)+3\left(x+3\right)\right]\)
\(=\left(x-1\right)\left(x+3\right)\left(x^2+3\right)\)
x^4+6x^3+7x^2–6x+1
=x^4+(6x^3–2x^2)+(9x^2–6x+1)
= x^4+2x^2(3x–1)+(3x–1)^2
=(x^2+3x–1)^2
\(x^3-3x^2+6x-4\)
\(=x^3-2x^2+4x-x^2+2x-4\)
\(=\left(x^3-2x^2+4x\right)-\left(x^2-2x+4\right)\)
\(=x\left(x^2-2x+4\right)-\left(x^2-2x+4\right)\)
\(=\left(x-1\right)\left(x^2-2x+4\right)\)
x^3 - 3x^2 + 6x - 4
<=> x^3-3x^2+3x-1+3x-3
<=>(x-1)^3+3(x-1)
<=>(x-1)+((x-1)^2+3)
<=>(x-1)+(x^2-2x+4)
Thợ Đào Mỏ Panda, mày bị điên à, không biết còn trả lời làm cái quái gì
\(x^4-6x^3+7x^2-6x+1\)
\(=x^4+x^2+1-6x^3+6x^2-6x\)
\(=\left(x^2+1\right)^2-x^2-6x\left(x^2-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)-6x\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1-6x\right)\)
\(=\left(x^2-x+1\right)\left(x^2-5x+1\right)\)