K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

A B C M

a) AB = AC => tam giác ABC cân tại A => B^ = C^ 

b) Xét tam giác ABM và tam giác ACM:

AB = AC 

B^ = C^  (cmt)

BM = CM 

=> tam giác ABM = tam giác ACm (c.g.c)

=> BAM^ = CAM^ (2 góc tương ứng )

Mà AM nằm trong góc BAC

=> M là tia phân giác của A^ 

10 tháng 1 2022

10 tháng 1 2022

TK

 

16 tháng 8 2020

a) Xét \(\Delta ABC\)

\(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABC\)cân tại A

\(\Rightarrow\widehat{B}=\widehat{C}\)

b) Vì M là trung điểm của BC 

=> AM là đường trung tuyến của \(\Delta ABC\)

Trong tam giác cân đường trung tuyến cũng là đường cao

\(\Rightarrow AM\perp BC\)

16 tháng 8 2020

                                           A B M C 1 2

a) Xét \(\Delta ABC\)có : AB = BC ( gt )

\(\Rightarrow\Delta ABC\)cân tại A

\(\Rightarrow\widehat{B}=\widehat{C}\)

b) Xét \(\Delta ABM\)và \(\Delta ACM\)có :

                     \(AB=AC\left(gt\right)\)

                    \(BM=MC\)( M là trung điểm của BC )

                     AM chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)( 2 góc tương ứng )

mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( kề bù )

\(\Rightarrow\widehat{M_1}=90^o\)

\(\Rightarrow AM\perp BC\)

              

31 tháng 12 2023

a: Xét ΔADB và ΔADC có

AB=AC

AD chung

BD=CD

Do đó: ΔADB=ΔADC

b: Ta có: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

c: Xét ΔADM vuông tại M và ΔADN vuông tại N có

AD chung

\(\widehat{DAM}=\widehat{DAN}\)

Do đó: ΔADM=ΔADN

=>AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

21 tháng 12 2023

a: Xét ΔABN và ΔACM có

AB=AC

\(\widehat{BAN}\) chung

AN=AM

Do đó: ΔABN=ΔACM

b: Ta có: AM+MB=AB

AN+NC=AC

mà AM=AN và AB=AC

nên MB=NC

Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

c: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,F thẳng hàng

20 tháng 11 2016

a, xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM     do M là trung điểm của BC

AM là cạnh chung 

=> tam giác ABM =tam giác ACM    c.c.c

=> góc B = góc C   do là 2 góc tương ứng

20 tháng 11 2016

vì tam giác ABM =tam giác ACM nên   góc BMA= góc AMC (2 góc tương ứng

mà ^BMA + ^AMC =180 độ  do là 2 góc kề bù

mà BMA = AMC nên BMA =AMC =180 độ :2 =90 độ

=> AM vuông góc với BC

11 tháng 12 2020

Bạn kiểm tra lại đề câu cuối!

22 tháng 11 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE

b:

MD\(\perp\)AB

AC\(\perp\)AB

Do đó: MD//AC

ME\(\perp\)AC

AB\(\perp\)AC

Do đó: ME//AB

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔBAC có

M,D lần lượt là trung điểm của BC,BA

=>MD là đường trung bình của ΔBAC

=>MD//AC và \(MD=\dfrac{AC}{2}\)

\(MD=\dfrac{AC}{2}\)

\(CE=\dfrac{AC}{2}\)

Do đó: MD=CE

MD//AC

\(E\in\)AC

Do đó: MD//CE

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

c: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC

=>DE//HM

ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=\dfrac{AC}{2}\)

mà \(MD=\dfrac{AC}{2}\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

=>DHME là hình thang

Hình thang DHME có MD=HE

nên DHME là hình thang cân

13 tháng 1 2023

hình thì bạn tự vẽ nha !

a) xét ΔAMB và ΔAMC, ta có : 

AB = AC (gt)

MB = MC (vì M là trung điểm của cạnh BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

⇒ AM vuông góc với BC

c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

xét ΔAHM và ΔAKM, ta có : 

AM là cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (cmt)

⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)

⇒ HA = KA (2 cạnh tương ứng)

HB không thể nào bằng AC được nha, có thể đề sai 

d) vì HA = KA nên ⇒ ΔHAK là tam giác cân

trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\)   (1)

trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\)    (2)

từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC

16 tháng 1 2023

A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X

Chứng minh:

a) Xét hai ∆AMB và ∆AMC có:

       AB = AC (GT)

       MB = MB (M là trung điểm của BC)

       AM là cạnh chung

Vậy ∆AMB = ∆AMC(c.c.c)

b) Có ∆AMB = ∆AMC(theo a)

⇒ Góc AMB = Góc AMC(2 góc tương ứng)

mà góc AMB + AMC = 180° (2 góc kề bù)

⇒ Góc AMB = Góc AMC = 90°

⇒ AM ∟ BC

c) ΔABC có:

       AB = AC(GT)

⇒ ΔABC cân tại A

⇒ Góc B = Góc C

Có MHAB tại H ⇒ Góc MHB = 90°

Có MKAC tại K ⇒ Góc MKC = 90°

Xét hai ΔBHM và ΔCKM có:

       Góc B = Góc C(ΔABC cân tại A)

       MB = MC(M là trung điểm của BC)

       Góc MHB = Góc MKC = 90°

Vậy ΔBHM = ΔCKM(g.c.g)

⇒ HB = KC(2 cạnh tương ứng)

Có HB + HA = AB

⇒ HA = AB - HB

Có KC + KA = AC

⇒ KA = AC - KC

mà AB = AC(GT)

       HB = KC(2 cạnh tương ứng)

⇒ HA = KA (2 cạnh tương ứng)