K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2022

Bé quá bạn ơi!

16 tháng 4 2022

có thể phóng to mà bẹn

 

NV
9 tháng 7 2021

Gọi \(\overrightarrow{v}=\left(a;b\right)\)

d nhận \(\left(4;3\right)\) là 1 vtcp, mà \(\overrightarrow{v}\) vuông góc d \(\overrightarrow{v}=\left(3k;-4k\right)\)  

Chọn \(M\left(-1;0\right)\in d\) , do \(T_{\overrightarrow{v}}\left(d\right)=d_1\Rightarrow\) ảnh \(M_1\left(x_1;y_1\right)\) của \(M\)  qua phép tịnh tiến \(\overrightarrow{v}\) nằm trên \(d_1\)

\(\left\{{}\begin{matrix}x_1=-1+3k\\y_1=0-4k=-4k\end{matrix}\right.\) \(\Rightarrow M_1\left(-1+3k;-4k\right)\)

Thế vào pt \(d_1\)

\(3\left(-1+3k\right)-4.\left(-4k\right)-2=0\) \(\Rightarrow k=\dfrac{1}{5}\)

\(\Rightarrow\overrightarrow{v}=\left(\dfrac{3}{5};-\dfrac{4}{5}\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot CH=AH^2=AM^2\)

9 tháng 10 2021

undefined

#include <bits/stdc++.h>

using namespace std;

long long a[1000],i,n,ln,dem;

int main()

{

cin>>n;

ln=LLONG_MIN;

for (i=1; i<=n; i++)

{

cin>>a[i];

ln=max(ln,a[i]);

}

dem=0;

for (i=1; i<=n; i++) 

if (a[i]==max) dem++;

cout<<dem;

return 0;

}

17 tháng 12 2020

"Trổ tay nghề" lại đi bạn, chụp vầy ai nhìn được chắc mắt gắn chức năng làm rõ hình ảnh :D

NV
19 tháng 3 2022

Đồng nhất hệ số 2 vế thôi, hệ số các vecto bên vế trái bằng với vế phải (bên vế trái ko có \(\overrightarrow{c}\) nên coi như hệ số của nó bằng 0, do đó \(-\left(2m+n\right)=0\Rightarrow2m+n=0\))

  

12 tháng 9 2021

12 tháng 9 2021

cảm ơn bạn nha

18 tháng 6 2021

3)\(sin6x.sin2x=sin5x.sinx\)

\(\Leftrightarrow\dfrac{1}{2}\left(cos4x-cos8x\right)=\dfrac{1}{2}\left(cos4x-cos6x\right)\)

\(\Leftrightarrow cos8x=cos6x\)

\(\Leftrightarrow\left[{}\begin{matrix}8x=6x+k2\pi\\8x=-6x+k2\pi\end{matrix}\right.\) (\(k\in Z\)\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{7}\end{matrix}\right.\)(\(k\in Z\))

Vậy...

13)\(cosx.cos3x-sin2x.sin6x-sin4x.sin6x=0\)

\(\Leftrightarrow\dfrac{1}{2}.\left(cos2x+cos4x\right)-\dfrac{1}{2}\left(cos4x-cos8x\right)-\dfrac{1}{2}\left(cos2x-cos10x\right)=0\)

\(\Leftrightarrow cos8x+cos10x=0\)

\(\Leftrightarrow2.cos9x.cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos9x=0\\cosx=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{9}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\) (\(k\in Z\))

Vậy...