A=/x-2010/+/x-2011/+/x-2012/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x=2011 \(\Rightarrow\)x+1=2012
\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)
=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)
= \(x-1=2011-1=2010\)
=
suy ra hai truong hop
1 : x-2011=x-2012
suy ra x-x=2011-2012(loai)
2 : x-2011=-(x-2012)
suy ra : x-2011=-x+2012
2x=2011+2012
2x=4023
x=2011.5
kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s
a/ \(\left|x-2011\right|=x-2012\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2011=x-2012\\x-2011=-x+2012\end{matrix}\right.\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}x-x=-2012+2011\\x+x=2012+2011\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=-1\left(loại\right)\\2x=4023\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{4023}{2}\)
Vậy ...
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
Ta có :
\(A=\frac{2012.14+1997+2010.2011}{2011.5+2011.1008+1012.2011}\)
\(\Rightarrow A=\frac{\left(2011+1\right).14+1997+2010.2011}{2011.\left(5+1008+1012\right)}\)
\(\Rightarrow A=\frac{2011.14+14+1997+2010.2011}{2011.2025}\)
\(\Rightarrow A=\frac{2011.14+2011+2010.2011}{2011.2025}\)
\(\Rightarrow A=\frac{2011.\left(14+1+2011\right)}{2011.2025}\)
\(\Rightarrow A=\frac{2011.25}{2011.25}\)
\(\Rightarrow A=1\) ( tử số = mẫu số )
Vậy \(A=1\)
~ Ủng hộ nhé
a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=2012\\\left(x-2012-x+2011\right)\left(x-2012+x-2011\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=2012\\2x=2023\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
b: Trường hợp 1: x<2010
Pt sẽ là 2010-x+2011-x=2012
=>4021-2x=2012
=>2x=2009
hay x=2009/2(nhận)
TRường hợp 2: 2010<=x<2011
=>x-2010+2011-x=2012
=>1=2012(vô lý)
Trường hợp 3: x>=2011
=>x-2010+x-2011=2012
=>2x=2012+4021=6033
hay x=6033/2(nhận)
a, Đ/k x-2012>=0 suy ra x>=2012
|x-2011|=\(\orbr{\begin{cases}x-2012\\2012-x\end{cases}}\)
TH1:x-2011=x-2012
suy ra 0=4023(loại vì mất x)
TH2: x-2011=2012-x
suy ra 2x=4023
suy ra x=2011,5
Vậy..........