K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2015

\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2015}{5^{2014}}\Rightarrow4S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}-\frac{2015}{5^{2015}}\)

Đặt B = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)

 => 5B = \(5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)

=> 4B = \(5-\frac{1}{5^{2014}}<5\)

=> B < \(\frac{5}{4}\)=> 4S < 5/4 => S < 5/16< 1/3

=> S < 1/3

đúng nhé

21 tháng 3 2018

1/51+1/52+....+1/99<1/2

18 tháng 8 2017

a < b k mình nha xong mình k lại cho

a) 

Ta có a > b vì b > 3 còn a < 3

 b)

a. Ta có : 1/51 + 1/52 + 1/53 +...+ 1/60 < 1/51 x 10 < 1/50 x 10 = 1/5

=> 1/51 + 1/52 +1/53 +...+1/60 < 1/5

b. Ta có : 1/51 + 1/52 + 1/53 +...+ 1/60 > 1/60 x 10 = 1/6

=> 1/51 + 1/52 +1/53 +...+ 1/60 > 1/6

27 tháng 3 2019

nhanh đi

30 tháng 6 2017

Ta có : 

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\) 

30 tháng 6 2017

\(T=1+\frac{3}{1.2^2}+\frac{4}{2.2^2}+\frac{5}{2^2.2^2}+...+\frac{2016}{2^{2013}.2^2}+\frac{2017}{2^{1014}.2^2}\)

\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{4}+\frac{6}{8}+...+\frac{2016}{x}+\frac{2017}{x}\right)\)

\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{2^2}+\frac{6}{2^3}+...+\frac{2016}{2^{2013}}+\frac{2017}{2^{2014}}\right)\)

Đến chỗ này chịu!