K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

Do đó: ΔHAC\(\sim\)ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)

Bài 2: 

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

16 tháng 7 2021

nhờ các bạn giải giúp hộ mình vs ạ mình cần gấp

8 tháng 2 2021

A B C 16 12 H

1) Có \(\Delta ABC\) vuông 

=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)

2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :

 AB +  AC2 =  BC2

=> 162 + 122 = BC2

=> 400            = BC2

=> BC             = 20 (cm)

Ta có :  S\(\Delta ABC\)  =  S\(\Delta ABH\)  +  S\(\Delta ACH\)

=>  \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)

=>  \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)

=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)

=> \(\dfrac{AH.BC}{2}\)               =  96

=> AH                         =  96 .  \(\dfrac{2}{BC}\) = 96 .  \(\dfrac{2}{20}\) = 9.6 (cm)

3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :

    BH2 = AB2 - AH2

=>BH= 162 - 9.62 = 163.84

=> BH = 12.8 (cm)

=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)

 

8 tháng 2 2021

Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)

                                        => AM là trung tuyến

Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)

                                      =>   AM là đường cao (TC các đường trong tam giác cân)

Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)

                              EM là đường cao (AM là đường cao, E thuộc AM)

=> Tam giác EBC cân tại E

M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Xét tam giác AMB vuông tại M (AM \(\perp BM\))

               AB= AM2 + BM2 (định lý Py ta go)

Thay số:  AB= 82 + 62

        <=> AB=  100

        <=> AB = 10 (cm)

Vậy AB = 10 (cm)

8 tháng 2 2021

Bài 1:

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AH2 = BH . HC (hệ thức lượng)

<=>    122  = 9 . HC

<=>    HC   = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)

Vậy HC = 16 (cm)

Ta có: BC = BH + HC = 9 + 16 = 25 (cm)

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AB2 = BH . BC (hệ thức lượng)

<=>    AB2 = 9 . 25

<=>    AB2 = 225

<=>    AB   = 15 (cm)

Vậy AB = 15 (cm)

Bài 3:

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{ABC}\) chung

Do đó: ΔHBA~ΔABC

b: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=9^2+12^2=225\)

=>\(BC=\sqrt{225}=15\left(cm\right)\)

Xét ΔBAC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot15=9^2=81\)

=>\(BH=\dfrac{81}{15}=5,4\left(cm\right)\)

c: ta có: HK\(\perp\)AB

AC\(\perp\)AB

Do đó: HK//AC

Xét ΔCAB có HK//AC

nên \(\dfrac{HK}{AC}=\dfrac{BH}{BC}\)

=>\(\dfrac{HK}{12}=\dfrac{5.4}{15}=\dfrac{54}{150}=\dfrac{9}{25}\)

=>\(HK=12\cdot\dfrac{9}{25}=\dfrac{108}{25}=4,32\left(cm\right)\)

\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)

2 tháng 1 2022

bổ sung
A. 108cm2 B. 54cm C. 54cm2 D. 15cm2