Tìm giá trị lớn nhất của:
A=2,7.(2-/x-1,3/)
B=6:/2x+1/+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
Ta có :
\(\left|x-1,2\right|\ge0;\left|y-\frac{3}{4}\right|\ge0\)
\(\Rightarrow\left|x-\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|-1,5\ge-1,5\forall x;y\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}}\)
Vậy ...
Ta có :
\(2\left|x+3\right|\ge0;3\left|y-1\right|\ge0\)
\(\Rightarrow Q=-14-2\left|x+3\right|-3\left|y-1\right|\le-14\forall x;y\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy ...
Giá trị nhỏ nhất của B = 0
Giá trị lớn nhất của Q = -11
a.\(-\left(x^2-x-6\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy Max của biểu thức = \(\frac{25}{4}\Leftrightarrow x=\frac{1}{2}\)
Chọn mình nha mình sẽ làm típ 1 bài nữa
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
\(B=\left|2x+7\right|-1\)
Ta có: \(\left|2x+7\right|\ge0\forall x\)
\(\Rightarrow\left|2x+7\right|-1\ge-1\)
\(B=-1\Leftrightarrow\left|2x+7\right|=0\Leftrightarrow x=-3,5\)
Vậy \(B_{min}=-1\Leftrightarrow x=-3,5\)
\(C=-\left|5x-3\right|-2\)
Ta có: \(\left|5x-3\right|\ge0\forall x\)
\(-\left|5x-3\right|\le0\forall x\)
\(\Rightarrow-\left|5x-3\right|-2\le-2\forall x\)
\(C=-2\Leftrightarrow\left|5x-3\right|=0\Leftrightarrow x=\frac{3}{5}\)
Vậy \(C_{max}=-2\Leftrightarrow x=\frac{3}{5}\)
Câu D tương tự câu C
Tham khảo nhé~
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
a. A=x2-3x+5=x2-1.5x-1.5x+2.25+2.75=x(x-1.5)-1.5(x-1.5)+2.75=(x-1.5)2+2.75
ta có (x-1.5)2 > hoặc = 0 với mọi x . Suy ra (x-1.5)2 +2.75 > hoặc = 2.75 với mọi x.
Dấu "=" xảy ra khi x-1.5=0 suy ra x=1.5
Vậy Amin=2.75 khi x=1.5