\(\dfrac{2005}{2007}và\dfrac{2007}{2009}\)
so sánh 2 phân số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
2005/2007=2007-2/2007=2007/2007 -2/2007=1 -2/2007
2007/2009 =2009-2007/2009=2009/2009 -2/2009=1-2009
vì 2007<2009 nên 2/2007>2/2009
⇒1-2/2007 <1-2/2009
⇒2005/2007 <2007/2009
Tham khảo nhé !
Ta có : \(\dfrac{2005}{2007}=2007-\dfrac{2}{2007}=\dfrac{2007}{2007}-\dfrac{2}{2007}=1-\dfrac{2}{2007}\)
\(\dfrac{2007}{2009}=2009-\dfrac{2007}{2009}=\dfrac{2009}{2009}-\dfrac{2}{2009}=1-2009\)
Vì \(2007<2009\) nên \(\dfrac{2}{2007}>\dfrac{2}{2009}\)
\(1-\dfrac{2}{2007}< 1-\dfrac{2}{2009}\)
\(\dfrac{2005}{2007}< \dfrac{2007}{2009}\)
Ta có :
\(1-\frac{2007}{2008}=\frac{1}{2008}\)
\(1-\frac{2008}{2009}=\frac{1}{2009}\)
Vì \(\frac{1}{2008}>\frac{1}{2009}\) nên \(\frac{2007}{2008}< \frac{2008}{2009}\)
phần bù đến 1 của 2007/2008 là 1-2007/2008=1/2008
phần bù đến 1 của 2008/2009 là 1-2008/2009=1/2009
Vì 1/2008>1/2009 nên 2007/2008<2008/2009
Áp dụng tính chất : \(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (\(a;b,m\in N\)*)
Ta có :
\(A=\dfrac{100^{2007}+1}{100^{2008}+1}< \dfrac{100^{2007}+1+99}{100^{2008}+1+99}=\dfrac{100^{2007}+100}{100^{2008}+100}=\dfrac{100\left(100^{2006}+1\right)}{100\left(100^{2007}+1\right)}=\dfrac{100^{2006}+1}{100^{2007}+1}=B\)
\(\Rightarrow A< B\)
Lời giải:
Xét PT(1):
\(\Leftrightarrow \frac{x-2013}{2011}+1+\frac{x-2011}{2009}+1=\frac{x-2009}{2007}+1+\frac{x-2007}{2005}+1\)
\(\Leftrightarrow \frac{x-2}{2011}+\frac{x-2}{2009}=\frac{x-2}{2007}+\frac{x-2}{2005}\)
\(\Leftrightarrow (x-2)\left(\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\right)=0\)
Dễ thấy $\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\neq 0$ nên $x-2=0$
$\Rightarrow x=2$Xét $(2)$:\(\Leftrightarrow \frac{(x-2)(x+m)}{x-1}=0\)
Để $(1);(2)$ là 2 PT tương đương thì $(2)$ chỉ có nghiệm $x=2$
Điều này xảy ra khi $x+m=x-1$ hoặc $x+m=x-2\Leftrightarrow m=-1$ hoặc $m=-2$
Akai Haruma Giáo viên, mk không hiểu tại sao lại có m=-1, m=-2 vào nữa, mk tưởng với mọi m chứ??
`(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005`
`<=>(x-2013)/2011+1+(x-2011)/2009+1=(x-2009)/2007+1+(x-2007)/2005+1`
`<=>(x-2)/2011+(x-2)/2009=(x-2)/2007+(x-2)/2005`
`<=>(x-2)(1/2011+1/2009-1/2007-1/2005)=0`
`<=>x-2=0`
`<=>x=2`
PT tương đương khi cả 2 PT có cùng nghiệm
`=>(x^2-(2-m).x-2m)/(x-1)` tương đương nếu nhận `x=2` là nghiệm
Thay `x=2`
`<=>(4-(2-m).2-2m)/(2-1)=0`
`<=>4-4+2m-2m=0`
`<=>0=0` luôn đúng.
Vậy phương trình `(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005` và `(x^2-(2-m).x-2m)/(x-1)` luôn tương đương với nha `forall m`
\(\left(1\right)\Leftrightarrow\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)
\(\Leftrightarrow\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2
<=> x2 - (2 - m)x - 2m = 0 có nghệm kép x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2
Giải (3) ta có: \(\left\{{}\begin{matrix}\Delta=\left[-\left(2-m\right)\right]^2+8m=0\\2^2-2\left(2-m\right)-2m=0\end{matrix}\right.\)
<=> m2 + 4m + 4 = 0
<=> (m + 2)2 = 0
<=> m = -2
Giải (4) ta có:
\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)
<=> -m - 1 = 0
<=> m = -1
Vậy có 2 giá trị của m thoả mãn là -2 và -1
Bạn hãy dùng phần bù nhé vì 2 phân số đều bé hơn 1 và đều hơn nhau 2 đơn vị 2007-2005=2 còn 2009-2007=2 nên ta sử dụng ph bù
Bài làm:
2005/2007=1-2005/2007=2/2007
1-2007/2009=2/2009
Ta thấy: 2/2007>2/2009 suy ra 2/2007<2/2009
>
Ta có : \(\dfrac{2005}{2007}=1-\dfrac{2}{2007};\dfrac{2007}{2009}=1-\dfrac{2}{2009}\)
\(Do:\dfrac{2}{2007}>\dfrac{2}{2009}\Rightarrow1-\dfrac{2}{2007}< 1-\dfrac{2}{2009}\)
\(\Rightarrow\dfrac{2005}{2007}< \dfrac{2007}{2009}\)