Cho hai số nguyên dương \(x;y\) thỏa mãn điều điện \(\dfrac{x^2+x+1}{x.y+1}\) là số nguyên dương.
Tính giá trị của \(P=y-x=?\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán, gợi ý giúp đỡ em tham khảo với ạ!
em cám ơn nhiều lắm ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, y là số nguyên âm nếu x,y là số nguyên dương
b,y là số nguyên dương nếu x,y là số nguyên âm
bạn k cho mk nha
a) Đúng
b) Đúng
c) Sai vì tích của hai số nguyên âm là số nguyên dương. Ví du (–13) .(–4) =52
d) Đúng
Vi x,y la hai so nguyen duong=>|x|=x;|y|=y=>|x|+|y|=x+y=20 Vay x+y=20 NHO **** MINH NHA
a) Đúng
Ví dụ: (-2)+ (-3)= -(2+3)= -5
b) Đúng
Ví dụ: 2+3=5
c) Sai. Ví dụ: (-2).(-3) = 6 > 0
d) Đúng
Ví dụ: 28.2= 56
a) Đúng
VD : (-8) + (-4) = - ( 8 + 4 ) = -12
b) Đúng
VD : 8 + 4 = 12
c) Sai
VD : (-8).(-4) = 32 ( không phải là số nguyên âm )
d) Đúng
VD : 8.4 = 32
có x+y=2021=>y=2021-x
=>x.y=x(2021-x)=2021x-\(x^2\)
=>P=2021x-\(x^2\)
=> -P=\(x^2-2021x\)\(=x^2-2.\dfrac{2021}{2}.x+\left(\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)=\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)
lại có x,y nguyên dương=>x,y\(\ge\)1
có x+y=2021=>x,y\(\le\)2020
=>\(x\le2020\)
=>\(x-\dfrac{2021}{2}\le2020-\dfrac{2021}{2}\)
<=>\(\left(x-\dfrac{2021}{2}\right)^2\le\left(\dfrac{2019}{2}\right)^2\)
=>\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\le\)\(\left(\dfrac{2019}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2=-2020\)
<=>\(-P\le-2020< =>P\ge2020\)
dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2020\\x=1\end{matrix}\right.\)
vậy MIN P=2020 khi x=2020 hoặc x=1
bổ sung đoạn cuối dấu với x=2020 thì y=1
với x=1 thì y =2020
a) Tổng của hai số nguyên âm là một số nguyên âm : Đ
b) Tổng hai số nguyên dương là một số nguyên dương : Đ
c) Tích của hai số nguyên âm là một số nguyên âm : S
Vd : ( -2) . ( -3)
- Đáp án sai là : -6
- Đáp án đúng là : 6
d) Tích của hai số nguyên dương là một số nguyên dương : Đ
Chúc bạn học tốt !
bạn nè, giá trị tuyệt đối của x thì bằng với x nếu x là số dương nhé.
Với \(y=1\Rightarrow\dfrac{x^2+x+1}{x+1}\in Z\Rightarrow\dfrac{1}{x+1}\in Z\Rightarrow\) ko tồn tại x nguyên dương thỏa mãn (loại)
Với \(y>1\):
Đặt \(\dfrac{x^2+x+1}{xy+1}=k\Rightarrow x^2-\left(ky-1\right)x+1-k=0\)
\(\Delta=\left(ky-1\right)^2+4\left(k-1\right)\) là số chính phương
Ta có: \(k\ge1\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)
Đồng thời \(y>1\Rightarrow y\ge2\Rightarrow2ky\ge4k>3\)
\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-2\right)^2+\left(2ky-3\right)+4\left(k-1\right)>\left(ky-2\right)^2\)
\(\Rightarrow\left(ky-2\right)^2< \left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)
\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-1\right)^2\)
\(\Rightarrow k=1\Rightarrow\dfrac{x^2+x+1}{xy+1}=1\)
\(\Rightarrow x^2+x=xy\Rightarrow y=x+1\)
\(\Rightarrow y-x=1\)