Cho tam giác ABC vuông cân tại A. Trên tia AB lấy điểm D, trên tia AC lấy điểm E ssao cho AD= AE. Qua đỉnh A,C vẽ một đường thẳng vuông góc với BE cắt BC lần lượt tại K,I. Chững minh rằng:IK=KC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:
\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))
\(\widehat{ABD}=\widehat{ACE}\)
\(BD=CE\) (giả thiết)
\(\Rightarrow\Delta ADB=\Delta AEC\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta ADE\) cân tại \(A\)
b) Vì \(\Delta ADE\) cân tại \(A\)
\(\Rightarrow\widehat{ADB}=\widehat{ACE}\) (\(2\) góc tương ứng)
Ta có: \(\left\{{}\begin{matrix}\widehat{ADB}+\widehat{HBD}=90^o\\\widehat{ACE}+\widehat{KCE}=90^o\end{matrix}\right.\) (\(2\) góc phụ nhau)
Từ hai điều trên \(\Rightarrow\widehat{HBD}=\widehat{KCE}\)
Mà \(\left\{{}\begin{matrix}\widehat{HBD}=\widehat{CBI}\\\widehat{KCE}=\widehat{BCI}\end{matrix}\right.\) (\(2\) góc đối đỉnh)
Từ đó \(\Rightarrow\widehat{CBI}=\widehat{BCI}\)
\(\Rightarrow\Delta BIC\) cân tại \(I\)
c) Xét \(\Delta ABI\) và \(\Delta ACI\) có:
\(AB=AC\) (giả thiết)
\(BI=CI\) (do \(\Delta BIC\) cân tại \(I\))
\(AI\) là cạnh chung
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (\(2\) góc tương ứng)
\(\Rightarrow AI\) là tia phân giác \(\widehat{BIC}\)
Gọi K là giao điểm của DN và BE
Ta có :
ΔBKD vuông tại K có:
^BDK + ^DBK = 90 độ (1)
ΔABC vuông tại A có:
^ABE + ^BEA = 90 độ (2)
Từ (1) và (2)
=> ^BDK = ^BEA = ^IDA (vì BDK và IDA là 2 góc đối đỉnh)
Xét Δ DAI vuông tại A và Δ EAB vuông tại A có:
AD = AE (gt)
^IDA = ^BEA (cmt)
==> Δ DAI = Δ EAB (cạnh góc vuông và góc nhọn kề)
=> AI = AB = AC (2 cạnh tương ứng)
=> A là trung điểm của CI (đpcm)
b) Gọi H là giao điểm của AM và BE
Có :
IK _|_ BE (gt)
AH _|_ BE (gt)
=> IK // AH
hay : IN // AM
Mà :
AI = IC (câu a)
=> MN = MC (hệ quả của tính chất đường trung bình trong tam giác)
Vậy MN = MC
a; Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
hay \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I