giải phương trình: \(\sqrt{\frac{^{x^2}}{4}}+\sqrt{x^2-4}\) =\(8-x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có ghi đề đúng ko ?Nếu nhầm thì tham khảo tại link sau : http://olm.vn/hoi-dap/question/695523.html
Sửa đề : \(\sqrt{\frac{x^2}{4}}+\sqrt{x^2-4}=8-x^2\)
Câu hỏi của Đặng Đức Bách - Toán lớp 9 - Học toán với OnlineMath
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
\(c,\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow\frac{x^2}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow2x^2=x^2+x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^2=x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^4=x^3+x\sqrt{3}\)
\(\Rightarrow x\left(x^2-x+\sqrt{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-x+\sqrt{3}=0\end{cases}}\)
pt <=>\(2\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}=16-2x^2\)
\(\Leftrightarrow\sqrt{x^2-4+\sqrt{x^2-4}+4}=16-x^2\)
\(\Leftrightarrow\sqrt{x^2-4}+2=16-2x^2\)
đặt \(\sqrt{x^2-4}=t\)
\(pt\Leftrightarrow t+2=16-t^2\)
giải ra đc t =1,5 hoặc t=-2
từ đó => x
hoi kho day