\(\frac{2005\cdot2007-1}{200+2005\cdot2006}\)
\(\frac{244\cdot395-151}{244+395\cdot243}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2005.2007-1}{2004+2005.2006}\)
\(=\frac{2005.2006+2005-1}{2004+2005.2006}\)
\(=\frac{2005.2006+2004}{2004+2005.2006}\)
\(=1\)
\(=\frac{2015\left(2006+1\right)-1}{2004+2005.2006}=\frac{2005.2006+2005-1}{2004+2005.2006}=1\)
\(\frac{244\times395-151}{244+395\times243}\)
\(=\frac{243\times395+395-151}{243\times395+244}\)
\(=\frac{243\times395+244}{243\times395+244}\)
\(=1\)
224x395-151=223x395+395-151=223x395+224
nên: (244x395-151)/(224+395x243)=1
Ta có:
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)\)
Đặt \(A=1.2+2.3+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+n\left(n+1\right)\left(n+2-\left(n-1\right)\right)\)
\(\Rightarrow3A=1.2.3-1.2.0+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow3A=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\Rightarrow1.2+2.3+...+2006.2007=\frac{2006.2007.2008}{2}\)
Vậy pt trở thành:
\(\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)x=\frac{2006.2007.2008}{2}\)
\(\Leftrightarrow\frac{2005}{2.2006.2007}x=2006.2007\)
\(\Rightarrow x=\frac{2.\left(2006.2007\right)^2}{2005}\)
Đáp án:
244x395-151
244+395x243
=243x395+395-151
243x395+244
=243x395+244
243x395+244
=1
Đáp án:
244x395-151
244+395x243
=243x395+395-151
243x395+244
=243x395+244
243x395+244
=1
tk cho mik nhé
=2006×(2004+1)-1/2004×2006+2005
=2006×2004+2006×1-1/2004×2006+2005
=2006×2004+2005/2004×2006+2005
=1