K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

Ta có 

a21 + \(\frac{1}{1999^2}\)\(\ge\frac{2a_1}{1999}\)

.............

a21999 + \(\frac{1}{1999^2}\ge2\frac{a_{1999}}{1999}\)

Cộng vế theo vế ta được

a21 + a22 + ...+ a21999 + \(\frac{1}{1999}\)\(\ge\)(a1 + a+ ...+ a1999 ) \(\frac{2}{1999}\)\(\frac{2}{1999}\)

<=>  a21 + a22 + ...+ a21999 \(\ge\frac{1}{1999}\)

7 tháng 5 2019

Ta có: x + y = ( a 1 2 +  b 1 ) + ( a 2 2  +  b 2 ) = ( a 1 +  a 2 ) 2  + ( b 1  +  b 2 )

Vì  a 1 ,  a 2 ,  b 1 ,  b 2  là các số hữu tỉ nên  a 1  +  a 2 ,  b 1  +  b 2  cũng là số hữu tỉ.

Lại có: xy = ( a 1 2  +  b 1 )( a 2 2  +  b 2 ) = 2 a 1 a 2  +  a 1 b 2 2  +  a 2 b 1 2  +  b 1 b 2

= ( a 1 b 2  +  a 2 b 1 ) 2  + (2 a 1 a 2  +  b 1 b 2 )

Vì a 1 ,  a 2 ,  b 1 ,  b 2 là các số hữu tỉ nên   a 1 b 2  +  a 2 b 1 ,  a 1 a 2  +  b 1 b 2  cũng là các số hữu tỉ.

25 tháng 2 2020

Ta có a1 +a2+...+a20 <0 
Lại có a2+a3+a4 >0;
          a5 +a6+a7 >0;
          a8+a9+a10>0;
          a11+a12+a13>0;
          a15+a16+a17>0;
          a18 +a19+a20>0;
          a1>0
          => a14<0;
Lại có a1+a2+a3 >0;
           a4+a5+a6>0;
            ....
            a10+a11+a12>0;
             a15+a16+a17>0;
             a18+a19+a20>0;
             => a13+a14<0;
              mà a12+a13+a14>0;
              =>a12>0;
              => a1.a12>0;
               a1.a14+a14.a12<0;
               =>a1.a14+a14.a12<a1.a12

 Câu 29. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 32. Tìm giá trị lớn nhất của biểu thức: Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:a) ab và a/b là số vô tỉ.b) a + b và a/b là số...
Đọc tiếp

 

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

                             Mn giúp em với ;-;

0
2 tháng 12 2018

Câu hỏi của Vu Kim Ngan - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

ta có

a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0

a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0

Ta có:

(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0

=>(a13+a14)<0

có a12+a13+a14>0=>a12>0

Từ các cmt suy ra a1>0; a12>0; a14<0

=>a1. a14+a12.a12<a1.a12(đpcm)

21 tháng 1 2019

13 tháng 12 2018

Đáp án A

Chọn x = - 1 ⇒ 1 + 2 12 = a 0 - a 1 + a 2 - a 3 + . . . + a 12 ⇒ S = 3 12

20 tháng 8 2019