Cho ABC cân tại A, có BAC nhọn. Vẽ AH vuông góc BC tại H. a) Chứng minh: ABH ACH. b) Vẽ đường trung tuyến BK của tam giác ABC cắt AH tại O. Qua H kẻ đường thẳng song song với AC, đường thẳng này cắt AB tại I. Chứng minh: ΔHAI cân và 3 điểm C, O, I thẳng hàng. c) Chứng minh: AH CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A.+K%E1%BA%BB+AH+vu%C3%B4ng+g%C3%B3c+BC+t%E1%BA%A1i+H++a)+CM+tam+gi%C3%A1c+ABH=tam+gi%C3%A1c+ACH++b)+V%E1%BA%BD+trung+tuy%E1%BA%BFn+BM.+G%E1%BB%8Di+G+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+AH+v%C3%A0+BM.+Ch%E1%BB%A9ng+minh+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m+c%E1%BB%A7a+tam+gi%C3%A1c+ABC++c)+Cho+AB=30cm,+BH=18cm.+T%C3%ADnh+AH,AG++d)+T%E1%BB%AB+H+k%E1%BA%BB+HD+song+song+v%E1%BB%9Bi+AC(D+thu%E1%BB%91c+AB),+ch%E1%BB%A9ng+minh+ba+%C4%91i%E1%BB%83m+C,G,D+th%E1%BA%B3ng+h%C3%A0ng&id=248109
a) vì tam giác ABC cân tại A nên góc B = góc C = 65độ(2 góc tương ứng )
ta có : gócA + gócB + gócC = 180độ( tổng 3 góc 1 tam giác )
gócA + 65độ + 65độ = 180độ
=>gócA = 180 - 65 - 65 =50
b)xét tam giác ABH và tam giác ACH , có :
gócB = gócC
AB = AC
=>tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn )
câu c tui ko biết làm
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
a: Xét ΔAHB và ΔAHC có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔAHB=ΔAHC
b: Xet ΔABC có
AH,BD là trung tuyến
AH cắt BD tại G
=>G là trọng tâm
c: Xét ΔABC có
H là trung điểm của BC
HE//AC
=>E là trung điểm của AB
=>C,G,E thẳng hàng
Hỏa Long Natsu bác eii, cái bài này là ae mk tự vẽ hình hay sao ý.
a) Xét \(\Delta AHB\text{ và }\Delta AHC\)
\(AB=AC\)
\(\widehat{A_1}=\widehat{A_2}\)
AH là cạnh chung
Nên: \(\Delta AHB=\Delta AHC\left(c-g-c\right)\)
\(\Rightarrow BH=CH\left(2\text{ cạnh tương ứng}\right)\)
\(\Rightarrow\Delta ABC\perp AH\left(\text{là phân giác cũng vừa là đường cao}\right)\)
\(\Rightarrow AH\perp BC\)
b) \(BH=\frac{36}{2}=18\left(cm\right)\)
\(AB^2=AH^2+BH^2\left(\text{áp dụng định lý Py-Ta-Go}\right)\)
\(AH^2=AB^2-BH^2\)
\(AH^2=30^2-18^2\)
\(AH^2=576\)
\(\Rightarrow AH=\sqrt{576}=24\left(cm\right)\)
c) \(AG=\frac{2}{3}.AH\)
\(\Rightarrow AH.\frac{2}{3}=24.\frac{2}{3}=16\left(cm\right)\)
\(AM=\frac{AB}{2}=\frac{30}{2}=15\left(cm\right)\)
\(\Rightarrow BA^2=AM^2+BM^2\)
\(\Rightarrow MB^2=BA^2-BM^2\)
\(MB^2=30^2-15^2\)
\(MB^2=\sqrt{675}=26\)
d) Bạn tự giải nha
a, Xét tam giác ABH và tam giác ACH có
góc bah =góc cah
ab =ac
góc B = góc C
=> tam giác abh = tam giác ach (g.c.g)
=>hb=hc
=>góc ahb = góc ahc
Mà góc AHB + góc AHC=180 độ
=>ah vuông góc với bc
b,bh=hc=36:2=18cm
áp dụng định lí PY-TA-GO vào tam giác ABH ta có
ab^2=ah^2+bh^2
=>ah^2=ab^2-bh^2
=>ah=24cm
a) xét tam giác BAH và tam giác HAC có:
AB = AC (gt)
góc A1 = góc A2 ( vì AH là p/giác)
AH chung
=> tam giác BAH = tam giác HAC ( c.g.c)
=> HB = HC
ta có: góc AHB + góc AHC = 1800 ( kề bù)
=> 2 góc AHB = 1800
=> góc AHB = \(\frac{180^0}{2}=90^0\)
=> AH vuông góc BC