K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

bn chỉ cần huy động 01 noron thần kinh là bit

GTNN = -32

10 tháng 9 2016

\(A=x^4+5x^2-32\) 

\(=x^4+5x^2+\frac{25}{4}-\frac{153}{4}\) 

\(=\left(x^2+\frac{5}{2}\right)^2-\frac{153}{4}\) 

Có: \(\left(x^2+\frac{5}{2}\right)^2\ge0\) 

\(\left(x^2+\frac{5}{2}\right)^2-\frac{153}{4}\ge-\frac{153}{4}\) 

Mà: \(x^2\ge0\Rightarrow\left(x^2+\frac{5}{2}\right)^2\ge\left(\frac{5}{2}\right)^2\) 

Dấu '=' xảy ra khi: \(\left(x^2+\frac{5}{2}\right)^2=\left(\frac{5}{2}\right)^2\Rightarrow x^2+\frac{5}{2}=\frac{5}{2}\Rightarrow x=0\) 

Thay vào: \(\left(x^2+\frac{5}{2}\right)^2-\frac{153}{4}=\frac{25}{4}-\frac{153}{4}=-32\) 

Vậy: \(Min_A=-32\) tại \(x=0\)

27 tháng 3 2021

A=5x2+2y24xy8x4y+19=(2x24xy+2y2)+4(xy)+(3x212x)+19=2(xy)2+4(xy)+3(x24x+4)+7=2[(xy)2+2(xy)+1]+3(x2)2+5=2(xy+1)2+3(x2)2+50Du "=" xy ra khi{xy+1=0x2=0{x=2y=x+1=3VyMinA=5{x=2y=3

27 tháng 3 2021

mik viết 5x2 là 5x mũ 2 nha

21 tháng 10 2021

a: Ta có: \(A=2x^2-8x+1\)

\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x=2

21 tháng 10 2021

bạn làm rõ ra dc ko mik ko hiểu

 

28 tháng 7 2023

\(x^2-9x+1=0\)

\(\Rightarrow\Delta=\left(-9\right)^2-4\cdot1\cdot1=77>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{77}}{2}\\x_2=\dfrac{9-\sqrt{77}}{2}\end{matrix}\right.\)

Ta có:

\(V=x^4+x^2+\dfrac{1}{5}x^2=x^4+\dfrac{6}{5}x^2\)

Thay \(x_1,x_2\) vào V ta có:

\(V_1=\left(\dfrac{9+\sqrt{77}}{2}\right)^4+\dfrac{6}{5}\left(\dfrac{9+\sqrt{77}}{2}\right)^2\approx6333\)

\(V_2=\left(\dfrac{9-\sqrt{77}}{2}\right)^4+\dfrac{6}{5}\left(\dfrac{9-\sqrt{77}}{2}\right)^2\approx0,015\)

17 tháng 10 2023

Sửa đề: 

\(E=x^4-2x^3+3x^2-4x+2022\)

\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+2020\)

\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+2020\)

Vì \(\left(x^2-x\right)^2+2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow E\ge2020\)

\(MinE=2020\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow x=1\)

9 tháng 11 2017

Ta có P =  5 x 2 − [ 4 x 2 − 3 x ( x − 2 ) ]

= 5 x 2 – (4 x 2 – 3 x 2 + 6x) = 5 x 2 – ( x 2 + 6x)

= 5 x 2 – x 2 – 6x = 4 x 2 – 6x

Thay x = − 3 2  vào biểu thức P = 4 x 2 – 6x ta được

P =   4. ( − 3 2 ) 2 − 6. ( − 3 2 ) = 4. 9 4 + 18 2 = 18

Vậy P = 4 x 2 – 6x. Với x = − 3 2  thì P = 18

Đáp án cần chọn là: A

a) Ta có: B(x)-M(x)=A(x)

nên M(x)=B(x)-A(x)

\(=x^4-2x^3+5x^2+x+10-x^4-2x^3+5x^2+3x+6\)

\(=-4x^3+10x^2+4x+16\)

6 tháng 7 2017

x 4 - 5 x 2 + 4 = x 4 - 4 x 2 - x 2 + 4 = x 4 - 4 x 2 - x 2 - 4 = x 2 x 2 - 4 - x 2 - 4 = x 2 - 4 x 2 - 1 = x + 2 x - 2 x + 1 x - 1

13 tháng 11 2021

\(1,=6xy\left(x^2-2xy+y^2\right)=6xy\left(x-y\right)^2\\ 2,=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\\ 3,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ 4,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ 5,=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\\ 6,Sửa:x^2-x-2=x^2+x-2x-2=\left(x+1\right)\left(x-2\right)\\ 7,=x^4-4x^2-x^2+4=\left(x^2-4\right)\left(x^2-1\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\\ 8,=-x^3-x^2-x=-x\left(x^2+x+1\right)\\ 9,=\left(a-3\right)\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\\ =\left(a-3\right)\left(a^2+9a+18\right)\\ =\left(a-3\right)\left(a^2+3a+6a+18\right)\\ =\left(a-3\right)\left(a+3\right)\left(a+6\right)\)

\(10,=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\\ =xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\\ =\left(x-y\right)\left(xy-xz-yz+z^2\right)\\ =\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

9 tháng 3 2023

\(f\left(x\right)=3x^5-5x^2+x^4-\dfrac{2}{3}x-x^5+3x^4-2x^2+x+1\)

\(\Rightarrow f\left(x\right)=2x^5-7x^2+4x^4+\dfrac{1}{3}x+1\)

Sắp xếp đa thức trên theo lũy thừa giảm dần của biến :

\(f\left(x\right)=2x^5+4x^4-7x^2+\dfrac{1}{3}x+1\)

9 tháng 3 2023

f(x) = 3x⁵ - 5x² + x⁴ - 2/3 x - x⁵ + 3x⁴ - 2x² + x + 1

= (3x⁵ - x⁵) + (x⁴ + 3x⁴) + (-5x² - 2x²) + (-2/3 x + x) + 1

= 2x⁵ + 4x⁴ - 7x² +1/3 x + 1