\(\frac{1}{\sqrt{x-\sqrt{x-0,5}}}\)tìm giá trị của x sao cho căn thức có nghĩa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(ĐKXĐ:x\ge0;x\ne1\)
= \(\frac{x+1+\sqrt{x}}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)
\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
\(=\frac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)
\(=\frac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\frac{x+2}{\sqrt{x}-1}\)
B ) Ta có :
\(Q=P-\sqrt{x}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}-\sqrt{x}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)
Đế Q nhận giá trị nguyên thì \(1+\frac{3}{\sqrt{x}-1}\in Z\)
\(\Leftrightarrow\frac{3}{\sqrt{x}-1}\in Z\left(vì1\in Z\right)\)
\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)\)
Ta có bảng sau :
\(\sqrt{x}-1\) | 3 | -3 | 1 | -1 |
\(\sqrt{x}\) | 4 | -2 | 2 | 0 |
\(x\) | 16(t/m) | 4(t/m) | 0(t/m) |
Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì \(x\in\left\{16;4;0\right\}\)
Để nó có nghĩa thì
\(\hept{\begin{cases}x-0,5\ge0\\x-\sqrt{x-0,5}>0\end{cases}}\)
<=> x \(\ge\frac{1}{2}\)
sao chị lại nói em em là nghĩa