cho goc tu xO y va mot diem O' hay ve mot goc nhon x'O'y' sao cho O'x'//ox va O'y'//oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi D và E lần lượt là các điểm đối xứng của A qua Ox và Oy . Khi đó ta suy ra AB = BD , AC = CE
Chu vi tam giác ABC : \(AB+BC+AC=DB+BC+CE\ge DE\) (hằng số)
Dấu "=" xảy ra khi D,B,C,E thẳng hàng => B,C lần lượt là giao điểm của DE với Ox và Oy
Hình bạn tự vẽ nha!
a) Vì \(Oz\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)
=> \(\widehat{xOz}=\widehat{yOz}.\)
Hay \(\widehat{AOC}=\widehat{BOC}\)
Xét 2 \(\Delta\) \(AOC\) và \(BOC\) có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOC}=\widehat{BOC}\left(cmt\right)\)
Cạnh OC chung
=> \(\Delta AOC=\Delta BOC\left(c-g-c\right).\)
=> \(AC=BC\) (2 cạnh tương ứng)
Chúc bạn học tốt!
a) Cm: AC=BC
Xét ΔAOC và ΔBOC, ta có:
\(\begin{cases} OA=OB(gt)\\ \widehat{AOC}= \widehat{BOC}(OC là tia phân giác \widehat{xOy}\\ OC là cạnh chung \end{cases}\)
Vậy ΔAOC = ΔBOC(c-g-c)
=>AC=BC( 2 cạnh tương ứng)
b)Cm: \(\widehat{xAC}=\widehat{yBC}\)
Ta có:
\(\begin{cases} \widehat{xAC}+ \widehat{OAC}=180^o(kề bù)\\ \widehat{yBC}+ \widehat{OBC}=180^o(kề bù) \end{cases}\)
Mà:
\(\begin{cases} \widehat{OAC}= \widehat{OBC}( \Delta AOC=\Delta BOC) \end{cases}\)
Suy ra: \( \widehat{xAC}= \widehat{yBC}\)
a: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOy}< \widehat{xOt}\)
nên tia Oy nằm giữa hai tia Ox và Ot
=>\(\widehat{xOy}+\widehat{yOt}=\widehat{xOy}\)
hay \(\widehat{yOt}=40^0>\widehat{xOy}\)
=>Oy không là phân giác của góc xOt
b: \(\widehat{mOt}=180^0-70^0=110^0\)