Tính nhanh
1 1/98-1 1/97+ 1/97+98
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề :
= 1/100 - (1 / 100.99 +1/99.98 + ...+ 1/3.2 +1/2.1 )
=1/100 - (1 /1.2 +1/ 2.3 +...+ 1/ 98.99 +1 / 99.100)
=1/100 -( 1- 1/ 2 +1/2 -1/3 +...+1/98 -1/99 +1/99 -1/100)
=1/100 - ( 1- 1/100)
=1/100 - 99 /100
= -98/100
= -49 /50
Ta có: \(A=\frac{97^{98}+1}{97^{99}+1}\Rightarrow97A=\frac{97^{99}+97}{97^{99}+1}=\frac{97^{99}+1+96}{97^{99}+1}=1+\frac{96}{97^{99}+1}\)
\(B=\frac{97^{97}+1}{97^{98}+1}\Rightarrow97B=\frac{97^{98}+97}{97^{98}+1}=\frac{97^{98}+1+96}{97^{98}+1}=1+\frac{96}{97^{98}+1}\)
Vì \(\frac{96}{97^{99}+1}< \frac{96}{97^{98}+1}\Rightarrow1+\frac{96}{97^{99}+1}< 1+\frac{96}{97^{98}+1}\Rightarrow97A< 97B\Rightarrow A< B\)
Vậy A < B
\(1+\frac{99}{98}-\frac{98}{97}+\frac{1}{97.98}\)
\(=1+1+\frac{1}{98}-\left(1+\frac{1}{97}\right)+\frac{1}{97}-\frac{1}{98}\)
\(=1+1+\frac{1}{98}-1-\frac{1}{97}+\frac{1}{97}-\frac{1}{98}\)
\(=1+1-1\)
\(=1\)
\(\frac{99}{98}-\frac{98}{97}+\frac{1}{97\times98}\)
\(=\left(1+\frac{1}{98}\right)-\left(1+\frac{1}{97}\right)+\frac{1}{97\times98}\)
\(=\frac{1}{98}-\frac{1}{97}+\frac{1}{97\times98}\)
\(=\frac{-1}{97\times98}+\frac{1}{97\times98}\)
\(=0\)
tử có 98 số 1 = 98.1
97 số 2= 98.2
.....
1 số 98 = 1.98 cộng tất cả lại bằng mẫu nên kết quả =1
\(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+...+98\right)}{1.98+2.97+3.96+...+97.2+98.1}\)
\(A=\frac{1.98+2.97+3.96+...+98.1}{1.98+2.97+3.96+...+98.1}=1\)