hãy tìm \(\pi\)\(\approx\)n. Và n \(\approx\)phải có 9 chữ số thập phân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì công thức chu vi đường tròn là \(2\pi R\) với R là độ dài bán kính, trong đó \(\pi \) là số không thể tính chính xác được mà chỉ có thể lấy số gần đúng nên hai giá trị tính được là số gần đúng.
b)
Kết quả của An: \({S_1} = 2\pi R \approx 2.3,14.2 = 12,56\) cm:
Kết quả của Bình: \({S_2} = 2\pi R \approx 2.3,1.2 = 12,4\)cm.
Ta thấy \(\pi > 3,14 > 3,1 => 2.\pi. R > {S_1} > {S_2}\)
\( = > \left| {2\pi R - {S_1}} \right| < \left| {2\pi R - {S_2}} \right|\)
Nói cách khác, sai số tuyệt đối của \(S_1\) nhỏ hơn \(S_2\).
=> Kết quả của An chính xác hơn.
1,gọi chiều rộng mảnh vườn là x(m)
chiều dài mảnh vườn là x+3 (m) (x>0)
vì tăng chiều dài thêm 2m và giảm chiều rộng 1m thì diện tích mảnh vườn không đổi nên ta có pt:
(x-1)(x+5)=x(x+3)
⇔\(x^2+5x-x-5=x^2+3x\Leftrightarrow x^2-x^2+5x-x-3x=5\Leftrightarrow x=5\) (TM)
vậy chiều rộng mảnh vườn là 5m
chiều dài mảnh vườn là 5+3=8m
2,bán kính đáy của hình trụ là 1,2:2= 0,6 (m)
thể tích của hình trụ là : V = 3,14.(0,6)\(^2\).1,8=2 (m\(^3\))
vậy thể tích của hình trụ đó là 2m\(^3\)
\(1,225\approx1,23\)
---------------------------
-----------------------------
\(1,225\approx1,23\)
Hoặc :
\(1,225\approx1,22\)
Chọn cái nào cũng được.
a, Vì MN // BC nên \(\dfrac{AM}{AB}=\dfrac{MN}{BC}=\dfrac{3}{12}\Rightarrow MN=\dfrac{3}{12}BC=4\left(cm\right)\)( áp dụng định lí Talet)
b,Câu này bạn áp dụng định lí Ta-lét cho 2 tam giác ABI và ACI ta đc \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\) VÀ \(\dfrac{AN}{AC}=\dfrac{KN}{CI}\) mà \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\) và CI=BI nên MK=KN => K là TĐ của MN
\(\pi\approx\)3,141592654