K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2015

Bạn nên nhớ các bài dạng dãy số này, sau này sẽ cần dùng rất nhiều:

 Ta có:  \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)

          \(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)

          \(2A=2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\)

 \(2A-A=\left(2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)

             \(A=2+\left(1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\frac{1}{2^{2014}}\)

             \(A=2-\frac{1}{2^{2014}}\)

11 tháng 5 2015

Ta có:\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)

\(\Leftrightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2014}}\right)\)

\(=2-\frac{1}{2^{2014}}=\frac{2^{2015}-1}{2^{2014}}\)

Vậy \(A=\frac{2^{2015}-1}{2^{2014}}\)

30 tháng 3 2016

ở mẫu   n4+n2+1=(n2+n+1)(n2-n+1)

\(\frac{2n}{n^4+n^2+1}=\frac{\left(n^2+n+1\right)-\left(n^2-2+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)

30 tháng 3 2016

0.4999998768

7 tháng 4 2016

de sai roi ban oi. coi lai gium

5 tháng 10 2017

\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+...+\frac{2014}{\sqrt{99}+\sqrt{100}}\)

\(=2014.\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\right)\)

\(=2014.\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=2014.\left(\sqrt{100}-\sqrt{1}\right)=2014.9=18126\)

5 tháng 10 2017

\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+.....+\frac{2014}{\sqrt{9}+\sqrt{100}}\)

\(=\sqrt{1}-\sqrt{2}+\sqrt{3}-\sqrt{2}+....+\sqrt{100}-\sqrt{999}\)

\(=\sqrt{100}-1\)

\(=9\)

P/s: Không chắc à

22 tháng 5 2017

a. \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2013}}\)

\(\Rightarrow3A-A=1-\frac{1}{3^{2014}}\)

\(\Rightarrow2A=1-\frac{1}{3^{2014}}\)

\(\Rightarrow A=\left(1-\frac{1}{3^{2014}}\right):2=\frac{1}{2}-\frac{1}{3^{2014}.2}=\frac{3^{2014}-1}{3^{2014}.2}\)

b.\(B=\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}\)

\(\Rightarrow2B=1+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\)

\(\Rightarrow2B-B=1-\frac{1}{2^{2014}}\)

\(\Rightarrow B=1-\frac{1}{2^{2014}}\)

8 tháng 4 2018

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2B=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\right)\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(B=1-\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2012}}\)

11 tháng 5 2019

đúng rùi đó

11 tháng 5 2019

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2011}}\)

\(A=2-\frac{1}{2^{2012}}\)