K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

1. Theo đầu bài ta có:
\(x^3+3xy+y^3\)
\(=\left(x^3+y^3\right)+3xy\)
\(=\left(x+y\right)\left(x^2+y^2-xy\right)+3xy\)
Do x + y = 1 nên:
\(=\left(x^2+y^2-xy\right)+3xy\)
\(=x^2+y^2+\left(3xy-xy\right)\)
\(=x^2+y^2+2xy\)
\(=\left(x+y\right)^2\)
Do x + y = 1 nên:
\(=1^2=1\)

2 tháng 9 2016

2. Theo đầu bài ta có:
\(m+n+p=15\)
\(\Rightarrow\left(m+n+p\right)^2=15^2\)
\(\Rightarrow m^2+n^2+p^2+2mn+2np+2mp=225\)
Do m2 + n2 + p2 = 77 nên:
\(\Rightarrow77+2\left(mn+np+mp\right)=225\)
\(\Rightarrow2\left(mn+np+mp\right)=225-77\)
\(\Rightarrow mn+np+mp=\frac{148}{2}\)
\(\Rightarrow mn+np+mp=74\)

30 tháng 9 2021

\(m^3+n^3+p^3-3mnp=\left(m^3+3m^2n+3mn^2+n^3\right)+p^3-3mnp-3m^2n-3mn^2=\left(m+n\right)^3+p^3-3mn\left(m+n+p\right)\)

\(=\left(m+n+p\right)\left[\left(m+n\right)^2-\left(m+n\right)p-p^2\right]-3mn\left(m+n+p\right)\)

\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2\right)-3mn\left(m+n+p\right)\)

\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2-3mn\right)\)

\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)

\(m^3+n^3+p^3-3nmp\)

\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)

\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)

\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)

20 tháng 2 2019

Đáp án B

Từ giả thiết suy ra

Do đó AB ≥ |OA - OB| = 1. Dấu bằng xảy ra khi O nằm ngoài đoạn AB. Suy ra đáp án đúng là B.

Hai đáp án A, D sai do nhầm OA =  x 2   +   y 2   +   z 2  = 4; OB =    m 2   +   n 2   +   p 2  = 9

Đáp án C sai do nhầm với câu hỏi vectơ AB có độ dài lớn nhất

4 tháng 9 2017

6 tháng 12 2019

12 tháng 6 2018

\(a)\) Ta có : 

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow\)\(a^2+b^2=\left(a+b\right)^2-2ab\)

Thay \(a+b=23\) và \(ab=132\) vào \(a^2+b^2=\left(a+b\right)^2-2ab\) ta được : 

\(a^2+b^2=23^2-2.132\)

\(a^2+b^2=529-264\)

\(a^2+b^2=265\)

Vậy \(a^2+b^2=265\)

Chúc bạn học tốt ~ 

12 tháng 6 2018

a,\(a^2+b^2=\left(a+b\right)^2-2ab\)

thay a+b=23 và ab=132 vào tính nhé

b,theo đề ra ta có \(x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)(1)

                                                                                      thay x+y=1 vào  (1)

ta đc \(x^3+y^3+3xy=1\)

bài 2

theo đề ra ta có           \(\left(m+n+p\right)^2=255\Leftrightarrow m^2+n^2+p^2+2\left(mn+np+mp\right)=225\)(1)

                                                                                         thay \(m^2+n^2+p^2=77\) vào(1)

                                                                   =>mn+np+mp=74

23 tháng 10 2021

Bài 4: 

Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

27 tháng 4 2017

Chọn A