Chứng minh rằng: 1/3.4+1/4.5+...+1/19.20<1/2. có lời giải chi tiết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2.3 + 1/3.4 + 1/4.5 + ... + 1/19.20
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20
= 1/2 - 1/20
= 9/20
k đii
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20
1/2 - 1/20
9/20
đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{189}{760}\)
Đặt \(B=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+...+\frac{3}{19}-\frac{3}{20}\)
\(=3-\frac{3}{20}=\frac{57}{20}\)
\(D=A-B=\frac{189}{760}-\frac{57}{20}=-\frac{1977}{760}\)
Gọi \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)là A
\(\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)là B
\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(1-\frac{1}{20}\right)\right]\)
\(A=\frac{1}{2}.\frac{19}{20}\)
\(A=\frac{19}{40}\)
\(B=\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)
\(B=\left(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}\right)\)
\(B=\left[3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)\right]\)
\(B=\left[3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)
\(B=\left[3.\left(\frac{19}{20}\right)\right]\)
\(B=\frac{57}{20}\)
Vậy A - B = \(\frac{19}{40}-\frac{57}{20}\)
\(=-\frac{95}{40}=-\frac{19}{8}\)
Nếu đúng thì k nha
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\) (đpcm)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)
Giữ nguyên phân số \(\frac{49}{50}\)
Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)
\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Ta có công thức :\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\cdot\cdot\cdot+\dfrac{1}{18\cdot19}+\dfrac{1}{19\cdot20}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\cdot\cdot\cdot+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}\)
\(=\dfrac{9}{20}\)
#\(Urushi\)☕
\(D=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{19\cdot20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{20}=\dfrac{19}{20}\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+....+\dfrac{1}{19\cdot20}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{20}\)
\(A=1-\dfrac{1}{20}\)
\(A=\dfrac{19}{20}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{3}-\dfrac{1}{20}=\dfrac{17}{60}< \dfrac{1}{2}\)
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{19.20}< \dfrac{1}{2}\)
=> \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}< \dfrac{1}{2}\)
=> \(\dfrac{1}{3}-\dfrac{1}{20}< \dfrac{1}{2}\)