Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của biểu thức :
A=/x-2015/+/x-2016/
GTNN | x - 2015| = 0
=> x = 2015
=> | 2015 - 2016 | = 1
=> min A = 0 + 1 = 1
GTNN | x - 2016 |= 0
=> x = 2016
=> | 2016 - 2015 | = 1
=> min A = 1 + 0 = 0
Vậy GTNN của A = 1
tíc mình nha !
\(A=\left|x-2015\right|+\left|x-2016\right|\)
Có: \(\left|x-2015\right|\ge0;\left|x-2016\right|\ge0\)
\(\left|x-2015\right|+\left|x-2016\right|\ge0\)
Trường hợp này dấu = không thể xảy ra, nên:
\(\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}\)
Thay: \(x=2015\) thì \(A=\left|2015-2015\right|+\left|2015-2016\right|=1\)
Thay: \(x=2016\) thì \(A=\left|2016-2015\right|+\left|2016-2016\right|=1\)
Ta thấy: \(x=2015\) và \(x=2016\) đều nhận giá trị là 1.
Vậy: \(Min_A=1\) tại \(x=2015\) hoặc \(x=2016\)
GTNN | x - 2015| = 0
=> x = 2015
=> | 2015 - 2016 | = 1
=> min A = 0 + 1 = 1
GTNN | x - 2016 |= 0
=> x = 2016
=> | 2016 - 2015 | = 1
=> min A = 1 + 0 = 0
Vậy GTNN của A = 1
tíc mình nha !
\(A=\left|x-2015\right|+\left|x-2016\right|\)
Có: \(\left|x-2015\right|\ge0;\left|x-2016\right|\ge0\)
\(\left|x-2015\right|+\left|x-2016\right|\ge0\)
Trường hợp này dấu = không thể xảy ra, nên:
\(\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}\)
Thay: \(x=2015\) thì \(A=\left|2015-2015\right|+\left|2015-2016\right|=1\)
Thay: \(x=2016\) thì \(A=\left|2016-2015\right|+\left|2016-2016\right|=1\)
Ta thấy: \(x=2015\) và \(x=2016\) đều nhận giá trị là 1.
Vậy: \(Min_A=1\) tại \(x=2015\) hoặc \(x=2016\)