Tìm GTLN của:
P=\(2-5X^2-Y^2-4XY+2X\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em học lop7 sãn sàng giúp anh
P = 2 -x2 +2x - ( 4x2 +4xy + y2)
= 1 - ( x2 -2x +1) - (2x +y)2
= 1 - (x-1)2 - (2x+y)2
vậy GTLN P = 1
\(A=x^2-4xy+4y^2+x^2+2x+1+2018\)
\(A=\left(x-2y\right)^2+\left(x+1\right)^2+2018\ge2018\)
\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)
\(B=-\left(4x^2+4xy+y^2\right)-\left(x^2-6x+9\right)+2029\)
\(B=-\left(2x+y\right)^2-\left(x-3\right)^2+2029\le2029\)
\(B_{max}=2029\) khi \(\left\{{}\begin{matrix}x=3\\y=-6\end{matrix}\right.\)
a: \(A=-3\left(x^2-2x+\dfrac{2}{3}\right)\)
\(=-3\left(x^2-2x+1-\dfrac{1}{3}\right)\)
\(=-3\left(x-1\right)^2+1< =1\)
Dấu '=' xảy ra khi x=1
b: \(B=-\left(16x^2+8x-4\right)\)
\(=-\left(16x^2+8x+1-5\right)\)
\(=-\left(4x+1\right)^2+5< =5\)
Dấu '=' xảy ra khi x=-1/4
d: \(x^2+2x+3=\left(x+1\right)^2+2>=2\)
=>E<=1/2
Dấu '=' xảy ra khi x=-1