Cho \(a+b+c=0\) và \(a^2+b^2+c^2=1\)
Tính \(M=a^4+b^4+c^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bình phương 2 vế a+b+c=0, tính được ab+bc+ca=-1/2.
Bình phương 2 vế ab+bc+ca=-1/2, tính được (ab)2+(bc)2+(ca)2=1/4
Bình phương 2 vế a2+b2+c2=1, ta có:
a4+b4+c4+2[(ab)2+(bc)2+(ac)2]=1
<=> a4+b4+c4+1/2=1
<=> M=1/2
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)
hay \(ab+bc+ac=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)
Ta có: \(M=a^4+b^4+c^4\)
\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy: \(M=\dfrac{1}{2}\)
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )
\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)
Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )
\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Vậy ...
ta có:
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
<=>(a+b+c)2=a2+b2+c2+2.(ab+bc+ac)
=>02 = 1 +2.(ab+bc+ac)
=>ab+bc+ac = -1/2
(ab+bc+ac)2=a2b2+a2c2+b2c2+ab2c+a2bc+abc2
<=>(ab+bc+ac)2=a2b2+a2c2+b2c2+abc.(a+b+c)
=> (-1/2)2=a2b2+a2c2+b2c2+abc.0
=>a2b2+a2c2+b2c2=1/4
suy ra:
(a2+b2+c2)2=a4+b4+c4+a2b2+a2c2+b2c2
=>12=a4+b4+c4+1/4
=>a4+b4+c4=1-1/4=3/4
ta có:
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac
<=>(a+b+c)^2=a^2+b^2+c^2+2.(ab+bc+ac)
=>0^2 = 1 +2.(ab+bc+ac)
=>ab+bc+ac = -1/2 (ab+bc+ac)2=a2b 2+a2c 2+b2c 2+ab2c+a2bc+abc2
<=>(ab+bc+ac)2=a2b 2+a2c 2+b2c 2+abc.(a+b+c)
=> (-1/2)2=a2b 2+a2c 2+b2c 2+abc.0 =>a2b 2+a2c 2+b2c 2=1/4
suy ra:
(a2+b2+c2 ) 2=a4+b4+c4+a2b 2+a2c 2+b2c 2
=>12=a4+b4+c4+1/4
=>a4+b4+c4=1-1/4=3/4
:A
a = - (b + c)
<=> a2 = b2 + c2 + 2bc
<=> a2 - b2 - c2 = 2bc
<=> a4 + b4 + c4 + 2(b2 c2 - a2 b2 - a2 c2) = 4b2 c2
<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2 = 1
<=> a4 + b4 + c4 = 0,5
Có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=-1\) (do \(a^2+b^2+c^2=1\) )
\(\Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab.bc+2bc.ca+2ca.ab=\dfrac{1}{4}\)
\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\Leftrightarrow \left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\) (do \(a+b+c=0\))
Lại có: \(M=a^4+b^4+c^4\)
\(=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2 +b^2c^2+c^2a^2\right)\)
\(=1-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\) (do \(a^2+b^2+c^2=1\))
\(=1-2.\dfrac{1}{4}\)(do \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\))
\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy \(M=\dfrac{1}{2}\)
\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)
\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)
\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)
a + b + c = 0
<=> a = -(b + c)
<=> a2 = b2 + 2bc + c2
<=> (a2 - b2 - c2)2 = (2bc)2
<=> a4 + b4 + c4 = 2(a2 b2 + b2 c2 + c2 a2) (1)
Ta có (a2 + b2 + c2)2 = 1
<=> a4 + b4 + c4 + 2(a2 b2 + b2 c2 + c2 a2) = 1
<=> 2(a4 + b4 + c4) = 1
=> M = \(\frac{1}{2}\)