Cho ABC vuông cân tại A, BC = 3cm. Vẽ ACE vuông cân tại E (E và B nằm khác phía đối với AC). CMR:
a, AECB là hình thang vuông
b, Tính các góc và các cạnh của hình thang đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai lam: vi tam giac abc vuong tai a suy ra bac=45 (1)
vi tam giac ace vuong tai e suy ra ace=45 (2)
bce=bac+ace (3)
tu 1 2 3 suy ra bce=aec (ma 2 goc o vi tri trong cung phia phu nhau) suy ra ae//bc nen tu giac aecb la hinh thang co aec =90 nen aecb la hinh thang vuong
tinh gum minh cac ban nha?
Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết, dhnb:dấu hiệu nhận biết, đ/n:định nghĩa, cmt:chứng minh trên, t/c: tính chất
a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.
tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.
mà góc EAC và góc ACB ở vị trí so le trong.
Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.
b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.
Có: góc ABC= 45 độ (cmt).
tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.
Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]
=> AD vông góc với BC. [đây là điều thứu hai suy ra được]
Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.
Xét tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)
12 + 12 =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.
* Vì tam giác ABcCvuông cân tại A suy ra: A1=C1=45 độ
* Vì tam giác AEC vuông cân tại E suy ra: A2=C2=45 độ
* Có: C1=A2 (=45 độ) (1)
C1 va A2 ở vị trí so le trong (2)
Từ (1) và (2) suy ra: AE//BC
* Tứ giác ABCE có: AE//BC (cmt)
E=90 độ
su ra ABCE là hình thang vuông.
* Áp dụng định lí Py-ta-go vào tam giác ABC vuông cân tại A ta được:
AB^2+AC^2=BC^2
suy ra: 2AB^2=2^2
suy ra: 2AB^2=4
suy ra: AB^2=4:2=2
suy ra: AB= căn 2 cm
suy ra AB=AC=căn 2 cm (do tam giác ABC vuông cân ở A)
* Áp dụng định lí Py-ta-go vào tam giác ACE vuông căn tại E ta được:
AE^2+EC^2=AC^2
suy ra: 2AE^2= căn 2^2
suy ra: 2AE^2=2
Tính các góc thì chỉ cần việc cộng vào thôi. Bn tự tính nhé.
suy ra: AE^2=2:2=1(cm)
suy ra: AE= 1cm
suy ra AE=EC=1cm (do tam giác AEC vuông cân ở E)
∠ E = ∠ (ECB) = 90 0 , ∠ B = 45 0
∠ B + ∠ (EAB) = 180 0 (hai góc trong cùng phía bù nhau)
⇒ ∠ (EAB) = 180 0 - ∠ B = 180 0 – 45 0 = 135 0
Tam giác ABC vuông tại A. Theo định lí Py-ta-go ta có:
A B 2 + A C 2 = B C 2 mà AB = AC (gt)
⇒ 2 A B 2 = B C 2 = 2 2 = 4
A B 2 = 2 ⇒ AB= √2(cm) ⇒ AC = √2 (cm)
Tam giác AEC vuông tại E. Theo định lí Py-ta-go ta có:
E A 2 + E C 2 = A C 2 , mà EA = EC (gt)
⇒ 2 E A 2 = A C 2 = 2
E A 2 = 1
⇒ EA = 1(cm) ⇒ EC = 1(cm)
a, Có tam giác ABC vuông cân tại A (gt)
=> \(\widehat{ABC}=\widehat{ACB}=45^o\)
Có tam giác ACE vuông cân tại E (gt)
=> \(\widehat{EAC}=\widehat{ECA}=45^o\)và \(\widehat{AEC}=90^o\)
Mà \(\widehat{ECA}+\widehat{ACB}=\widehat{ECB}\)
=> \(\widehat{ECB}=90^o\)
=> góc AEC + góc ECB = 180o
Mà 2 góc này ở vị trí trong cùng phía
=> AE // BC
=> Tứ giác AECB là hình thang có \(\widehat{AEC}=90^o\)
=> Hình thang AECB là hình thang vuông (Đpcm)
b, (tiếp lỡ ấn nhầm nút gửi câu trả lời ~~~~)
Kẻ AM vuông góc BC
Mà tam giác ABC vuông cân tại A
=> AM là trung tuyến tam giác ABC
=> AM = BM = CM = \(\frac{1}{2}\)BC (trung tuyến ứng vs cạnh huyền bằng nửa cạnh huyền)
=> AM = BM = CM = 1,5 cm
Xét tam giác AMB vuông tại M
=> AM2 + BM2 = AB2 (Pitago)
=> (1,5)2 + (1,5)2 = AB2
=> AB2 = 4,5
=> AB = \(\sqrt{4,5}\)cm
Mà AB = AC (tam giác ABC vuông cân tại A)
=> AC = \(\sqrt{4,5}\)cm
Có: tam giác AEC vuông cân tại E (gt)
=> EA = EC
=> EA2 + EC2 = AC2
=> 2.EA2 = 2.EC2 = 4,5
=> EA2 = EC2 = 2,25
=> EA = EC = 1,5
=> Các cạnh của hình thang là:
AB = \(\sqrt{4,5}\)cm
AE = EC = 1,5 cm
BC = 3cm