\(\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+...+\frac{1}{156}+\frac{1}{182}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khoảng = 6 ... mik ko bít kết quả ra sao nưng theo mik bn nên tự làm hơn nhé ! k
mik nha !
cái này khó quá thầy tớ ra mà cả lớp nghĩ mãi chả ra rồi chịu thầy cho đây là bài về nhà nên khó quá tớ k làm được
\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)
\(A=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)
\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}\)
\(A=\frac{1}{6}-\frac{1}{15}\)
\(A=\frac{1}{10}\)
A=\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)
=\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)
=\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{14}-\frac{1}{15}\)
=\(\frac{1}{6}-\frac{1}{15}=\frac{1}{10}\)
\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+...+\frac{1}{210}=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+...+\frac{1}{14.15}\)
\(=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+...+\frac{1}{14}-\frac{1}{15}\)
\(=\frac{1}{6}-\frac{1}{15}=\frac{1}{10}\)
\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)
\(A=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)
\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}\)
\(A=\frac{1}{6}-\frac{1}{15}\)
\(A=\frac{1}{10}\)
A = 1/5 + [1/5.6 + 1/6.7 + ... + 1/12.13]
A = 1/5 + [1/5-1/6+1/6-1/7+...+1/12-1/13]
A = 1/5 + [1/5-1/13]
A = 1/5 + 8/65
A = 21/65
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{12.13}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{12}-\frac{1}{13}\)
\(=\frac{1}{4}-\frac{1}{13}=\frac{9}{52}\)
Đè thừa một số \(\frac{25}{156}\),mk ko lại đề bài nhé
\(A=1-\frac{2+3}{2\cdot3}+.....+\frac{11+12}{11\cdot12}-\frac{12+13}{12\cdot13}\)
\(=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-...+\frac{1}{11}+\frac{1}{12}-\frac{1}{12}-\frac{1}{13}\)
\(=\frac{1}{2}-\frac{1}{13}=\frac{11}{26}\)
\(A=\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}\)
\(=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}\)
\(=\frac{1}{7}-\frac{1}{13}\)
\(=\frac{6}{91}\)
\(A=\frac{1}{7\times8}+\frac{1}{8\times9}+\frac{1}{9\times10}+...+\frac{1}{13\times14}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{14}\)
\(=\frac{1}{7}-\frac{1}{14}=\frac{1}{14}\)
\(\left(1-\frac{1}{35}\right)\left(1-\frac{1}{36}\right)\left(1-\frac{1}{37}\right)...\left(1-\frac{1}{2010}\right)\left(1-\frac{1}{2011}\right)\)
\(=\frac{34}{35}.\frac{35}{36}.\frac{36}{37}.....\frac{2009}{2010}.\frac{2010}{2011}\)
\(=\frac{34}{2011}\)
\(\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}+\frac{109}{110}+\frac{131}{132}+\frac{155}{156}\)
\(=1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}+1-\frac{1}{110}+1-\frac{1}{132}+1-\frac{1}{156}\)
\(=7-\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}\right)\)
\(=7-\left(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\right)\)
\(=7-\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{12}-\frac{1}{13}\right)\)
\(7-\left(\frac{1}{6}-\frac{1}{13}\right)=6\frac{71}{78}\)
\(A=\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+...+\frac{1}{156}+\frac{1}{182}\)
\(A=\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+...+\frac{1}{12.13}+\frac{1}{13.14}\)
\(A=\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+...+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}\)
\(A=\frac{1}{8}-\frac{1}{14}\)
\(A=\frac{3}{56}\)
\(\frac{1}{72}+\frac{1}{90}+....+\frac{1}{156}+\frac{1}{182}\)
\(=\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+....+\frac{1}{12\cdot13}+\frac{1}{13\cdot14}\)
\(=\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+...+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}\)
\(=\frac{1}{8}-\frac{1}{14}\)
\(=\frac{3}{56}\)