Jup mình với ạ mai mình nộp mất rùiii ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
1) 43 . 78 - 43 . 48 + 30 . 80 - 30 . 23
= 43.(78 - 48) + 30.(80 - 23)
= 43.30 + 30.57
= 30.(43 + 57)
= 30.100
= 3000
2) 31.175 - 31.50 + 69.125
= 31.(175 - 50) + 69.125
= 31.125 + 69.125
= 125.(31 + 69)
= 125.100
= 12500
3) 2.[(7 - 3¹³ : 3¹²) : 2² + 99] - 10²
= 2.[(7 - 3) : 4 + 99] - 100
= 2.(4 : 4 + 99) - 100
= 2.(1 + 99) - 100
= 2.100 - 100
= 200 - 100
= 100
4) 2²⁰¹⁹.2² : 2²⁰¹⁶ - 125 : 5² + 2019⁰
= 2²⁰²¹ : 2²⁰¹⁶ - 125 : 25 + 1
= 2⁵ - 5 + 1
= 32 - 4
= 28
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D M N XXét tứ giác AMDN có ^AMD=^MAN=^AND=90∞
⇒AMDN là hình chữ nhật
hcn AMDN có AD là phân giác góc A
⇒AMDN là hình vuông(dấu hiệu 3)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}2x+y=1\\x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x+y=-1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x+2y=18\\x-y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=9\\x-y=-6\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}2x=3\\x-y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{15}{2}\end{matrix}\right.\)\(\left\{{}\begin{matrix}2x+3y=6\\x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=12\\3x-6y=9\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}7x=21\\3x-6y=9\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình (D) có dạng:
\(y=k\left(x-1\right)-2\Leftrightarrow y=kx-k-2\)
Phương trình hoành độ giao điểm (P) và (D):
\(-\dfrac{x^2}{4}=kx-k-2\Leftrightarrow x^2+4kx-4\left(k+2\right)=0\) (1)
\(\Delta'=4k^2+4\left(k+2\right)=\left(2k+1\right)^2+7>0\) ; \(\forall k\)
\(\Rightarrow\) (1) luôn có 2 nghiệm pb hay (D) luôn cắt (P) tại 2 điểm pb A và B
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-4k\\x_Ax_B=-4\left(k+2\right)\end{matrix}\right.\)
Đặt \(A=x_A^2x_B+x_Ax_B^2=x_Ax_B\left(x_A+x_B\right)\)
\(A=-4\left(k+2\right).\left(-4k\right)=16\left(k^2+2k\right)=16\left(k+1\right)^2-16\ge-16\)
\(\Rightarrow A_{min}=-16\) khi \(k+1=0\Leftrightarrow k=-1\)
4:
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC
=>góc xAC=góc AEF
=>Ax//EF
=>OA vuông góc EF
ME=MF
IF=IE
=>MI là trung trực của EF
=>MI vuông góc EF
=>MI//OA