\(\frac{39}{52}\)chia cho số tự nhiên nào để có kết quả bằng \(\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1\frac{3}{7}=\frac{10}{7}\)
\(\Rightarrow a⋮\frac{10}{7}\) và \(a⋮\frac{3}{5}\)
\(\Rightarrow a=5.10=50\)
doi 1/3/7 ra phan so ta duoc :10/7
vi a chia het cho 3/5 va a cung chia het cho 10/7
suy ra a thuoc bcnn (3;10)=3x2x5=30
vay so tu nhien a la 30
chuc ban hoc gioi nhe
Chọn A
Ta có tất cả các số tự nhiên có 7 chữ số bắt đầu từ 1000000 đến 9999999 gồm 9000000 số.
Do đó
Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 3.
Mà nên ta chia 9000000 số thành 128571 bộ 70 số liên tiếp và còn lại 30 số cuối, trong đó:
128571 bộ 70 số tự nhiên liên tiếp có 128571 số thỏa mãn yêu cầu
30 số cuối có 3 số tận cùng bằng 3 được xét trong bảng sau
9999973 |
9999983 |
9999993 |
Chia cho 7 dư 4 |
Chia hết cho 7 |
Chia cho 7 dư 4 |
Vậy tất cả có 128572 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3.
Gọi A là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3’ thì n(A) = 128572
Suy ra
Chọn A
Ta có tất cả các số tự nhiên có 7 chữ số bắt đầu từ 1000000 đến 9999999 gồm 9000000 số.
Do đó
Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 3.
Mà 90000 = 70x128571 + 30, nên ta chia 9000000 số thành 128571 bộ 70 số liên tiếp và còn lại 30 số cuối, trong đó:
128571 bộ 70 số tự nhiên liên tiếp có 128571 số thỏa mãn yêu cầu
30 số cuối có 3 số tận cùng bằng 3 được xét trong bảng sau
9999973 |
9999983 |
9999993 |
Chia cho 7 dư 4 |
Chia hết cho 7 |
Chia cho 7 dư 4 |
Vậy tất cả có 128572 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3.
Gọi là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3’ thì n(A) = 128572
Suy ra
Chọn A
Ta có tất cả các số tự nhiên có 7 chữ số bắt đầu từ 1000000 đến 9999999 gồm 9000000 số.
Do đó
Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 3.
Mà nên ta chia 9000000 số thành 128571 bộ 70 số liên tiếp và còn lại 30 số cuối, trong đó:
128571 bộ 70 số tự nhiên liên tiếp có 128571 số thỏa mãn yêu cầu
30 số cuối có 3 số tận cùng bằng 3 được xét trong bảng sau
9999973 |
9999983 |
9999993 |
Chia cho 7 dư 4 |
Chia hết cho 7 |
Chia cho 7 dư 4 |
Vậy tất cả có 128572 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3.
Gọi A là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3’ thì n(A) = 128572
Suy ra
- Theo đề bài :
\(a:\frac{3}{5}\in N\)=) \(a.\frac{5}{3}\in N\)
=) \(a⋮3\)\(\left(1\right)\)
Và \(a:1\frac{3}{7}\in N\)=) \(a:\frac{10}{7}\in N\)=) \(a.\frac{7}{10}\in N\)
=) \(a⋮10\)\(\left(2\right)\)
-Từ \(\left(1\right),\left(2\right):\)
=) \(a\in BC\left(3,10\right)\)
Mà a là số tự nhiên nhỏ nhất =) \(a\in BCNN\left(3,10\right)\)
=) \(a=30\)
\(\frac{39}{52}\) chia cho số tự nhiên nào để có kết quả bằng \(\frac{3}{4}\)
Vậy số đó là: \(\frac{39}{52}:\frac{3}{4}=1\)
Gọi số tự nhiên đó là x, ta có:
\(\frac{39}{52}:x=\frac{3}{4}\) .
\(\Rightarrow x=\frac{39}{52}:\frac{3}{4}=1\)
Vậy: \(\frac{39}{52}\) chia cho 1 có kết quả là \(\frac{3}{4}\)