cho a,b,c thõa mãn a^2+b^2+c^2 =1 .chứng minh : a+b+c+ab+ac+bc<=1+√3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab-ac+bc-c^2=-1
<=>a.(b-c)+c(b-c)=-1
<=>(b-c)(a+c)=-1
=>trong 2 thừa số b-c ;a+c 1 thừa số bằng 1 và thừa số kia bằng =-1
hay chúng đối nhau
=>b-c=-(a+c)=-a-c
=>b=-a(cùng bớt đi -c)
=>a và b là 2 số đối nhau(đpcm)
Ta có : ab - ac + bc - c mũ 2 = -1
(ab-ac)+( bc - c mũ 2)= -1
=> a(b - c)+c ( b - c )= -1
=> ( b - c ) . ( a +c )= -1
Vì a;b;c là các số nguyên nên a+c =1;b-c=-1hay a+c=-1;b-c=1
=> a + b = 0 hay a và b là 2 số đối nhau !
Tích cho mình nhé !!!
Theo t thì điều kiện thế này:\(-1< a,b,c< 1\)
Vì \(a+b+c=0;-1< a,b,c< 1\) nên trong các số a,b,c thì tồn tại 2 số có cùng dấu.Giả sử \(a>0;b>0;c< 0\)
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)
Do \(a+b+c=0;-1< a,b,c< 1\) nên:\(a^2+b^2+c^2< \left|a\right|+\left|b\right|+\left|c\right|\)
\(\Rightarrow a^2+b^2+c^2< a+b-z\)
\(\Rightarrow a^2+b^2+c^2< -2z< 2\)
\(\Rightarrowđpcm\)
Ta có:\(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{cases}\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\Rightarrow1\ge ab+bc+ca}\)(1)
Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca\le1+2=3\)
\(\Rightarrow\left(a+b+c\right)^2\le3\Rightarrow a+b+c\le\sqrt{3}\)(2)
Từ (1) và (2) suy ra \(a+b+c+ab+bc+ca\le1+\sqrt{3}\)