K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

Ta có:\(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{cases}\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\Rightarrow1\ge ab+bc+ca}\)(1)

Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca\le1+2=3\)

\(\Rightarrow\left(a+b+c\right)^2\le3\Rightarrow a+b+c\le\sqrt{3}\)(2)

Từ (1) và (2) suy ra \(a+b+c+ab+bc+ca\le1+\sqrt{3}\)

11 tháng 1 2016

ab-ac+bc-c^2=-1

<=>a.(b-c)+c(b-c)=-1

<=>(b-c)(a+c)=-1

=>trong 2 thừa số b-c ;a+c 1 thừa số bằng 1 và thừa số kia bằng =-1

hay chúng đối nhau

=>b-c=-(a+c)=-a-c

=>b=-a(cùng bớt đi -c)

=>a và b là 2 số đối nhau(đpcm)

11 tháng 1 2016

Ta có : ab - ac + bc - c mũ 2 = -1

           (ab-ac)+( bc - c mũ 2)= -1

            => a(b - c)+c ( b - c )= -1

            => ( b - c ) .   ( a +c )= -1

Vì a;b;c là các số nguyên nên a+c =1;b-c=-1hay a+c=-1;b-c=1

=> a + b = 0 hay a và b là 2 số đối nhau !

Tích cho mình nhé !!!   

 

 

8 tháng 4 2019

Theo t thì điều kiện thế này:\(-1< a,b,c< 1\)

Vì  \(a+b+c=0;-1< a,b,c< 1\) nên trong các số a,b,c thì tồn tại 2 số có cùng dấu.Giả sử \(a>0;b>0;c< 0\)

\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)

Do  \(a+b+c=0;-1< a,b,c< 1\)  nên:\(a^2+b^2+c^2< \left|a\right|+\left|b\right|+\left|c\right|\)

\(\Rightarrow a^2+b^2+c^2< a+b-z\)

\(\Rightarrow a^2+b^2+c^2< -2z< 2\)

\(\Rightarrowđpcm\)

Cậu ch0 mik xl nhen! Mik k0 bít làm! Xl rất nhìu