Cho a/b = c/d . CMR a^2 - b^2 / c^2 - d^2 = a.b / c.d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=\left(c^2+d^2\right)ab\)
\(\Leftrightarrow a^2cd-c^2ab-d^2ab+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\begin{cases}ac=bd\\ad=bc\end{cases}\)
\(\Leftrightarrow\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}\)
Cho \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\hept{\begin{cases}a^2=b^2k^2\\c^2=d^2k^2\end{cases}}}\)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
Lại có: \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)
Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\left(ĐPCM\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
<=> a2cd + b2cd = abc2 + abd2
<=> a2cd - abd2 = abc2 - b2cd
<=> ad(ac - bd) = bc(ac - bd)
<=> ad = bc
<=> \(\frac{a}{b}=\frac{c}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
Viet lai de bai
Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR:\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Bai lam:
Dat \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta co:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
\(\frac{ab}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)
Cho tỉ lệ thức: a/b = c/d
CMR ta có tỉ lệ thức sau: ab/cd = (a² - b²)/(c² - d²)
Mình nghĩ bài này phải có thêm đk là c ≠ d nữa mới đủ ^^
Từ giả thiết: a/b = c/d --> a/c = b/d
Theo tính chất tỉ lệ thức thì ta có:
a/c = b/d = (a - b)/(c - d) = (a + b)/(c + d)
Ta lấy: a/c = (a - b)/(c - d)
và lấy: b/d = (a + b)/(c + d)
--> (a/c).(b/d) = (a - b)/(c - d) . (a + b)/(c + d)
--> ab/cd = (a² - b²)/(c² - d²) --> đpcm