A = \(\frac{x}{x+1}\)-\(\frac{2}{x}\)+\(\frac{2}{x^2+x}\)(x\(\ne\)0; x\(\ne\)-1
Rút gọn A và tìm x để |A| = 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
a, Ta có : \(A=\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{x-\sqrt{x}+2-\left(\sqrt{x}+1\right)}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{x-2\sqrt{x}+1}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{\left(\sqrt{x}-1\right)^2}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\frac{\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\frac{\left(x+2\sqrt{x}\right)}{\left(2x-2\sqrt{x}\right)}\)
=> \(A=\frac{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(2x-2\sqrt{x}\right)}\)
=> \(A=\frac{\left(\sqrt{x}-1\right)\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}\left(\sqrt{x}-1\right)}\)
=> \(A=\frac{\sqrt{x}+2}{2\sqrt{x}+2}\)
b, Ta có : \(A=\frac{\sqrt{x}+1+1}{2\left(\sqrt{x}+1\right)}=\frac{1}{2}+\frac{1}{2\left(\sqrt{x}+1\right)}\)
- Ta thấy : \(\sqrt{x}+1>0\)
=> \(\frac{1}{2\left(\sqrt{x}+1\right)}>0\)
=> \(\frac{1}{2\left(\sqrt{x}+1\right)}+\frac{1}{2}>\frac{1}{2}\)
=> \(A>\frac{1}{2}\) ( đpcm )
a: \(A=\dfrac{x^5}{x^3}\cdot\dfrac{y^{-2}}{y}=x^2\cdot y^{-1}=\dfrac{x^2}{y}\)
b: \(B=\dfrac{x^2\cdot y^{-3}}{x^3\cdot y^{-12}}=\dfrac{x^2}{x^3}\cdot\dfrac{y^{-3}}{y^{-12}}=\dfrac{1}{x}\cdot y^{-3+12}=\dfrac{y^9}{x}\)
a) \(A=\dfrac{x^5y^{-2}}{x^3y}=\dfrac{x^5}{x^3}.\dfrac{1}{y^{2-1}}=x^{5-3}y^{-1}=x^2y^{-1}\).
b) \(B=\dfrac{x^2y^{-3}}{\left(x^{-1}y^4\right)^{-3}}=\dfrac{x^2y^{-3}}{x^3y^{-12}}=x^{2-3}y^{-3-\left(-12\right)}=\dfrac{1}{xy^9}\)
Với \(x\ne0;x\ne-1\)
\(A=\frac{x}{x+1}-\frac{2}{x}+\frac{2}{x^2+x}\)
\(=\frac{x^2-2x-2+2}{x\left(x+1\right)}=\frac{x^2-2x}{x\left(x+1\right)}=\frac{x-2}{x+2}\)
Ta có : \(\left|A\right|=\left|\frac{x-2}{x+2}\right|=\frac{1}{2}\)
* TH1 : \(\frac{x-2}{x+2}=\frac{1}{2}\Rightarrow2x-4=x+2\Leftrightarrow x=6\)( tm )
* TH2 : \(\frac{x-2}{x+2}=-\frac{1}{2}\Rightarrow2x-4=-x-2\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)