Tính hợp lý (1-\(\frac{1}{2}\))(1-\(\frac{1}{3}\))(1-\(\frac{1}{4}\))...(1-\(\frac{1}{100}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
trong tích trên có 1 thừa số như thế này:
\(\left(\frac{1}{125}-\frac{1}{5^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{125}\right)\)
=0
=> tích trên bằng 0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+.....+\frac{5}{25.28}\)
\(=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{25.28}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}.\frac{3}{14}=\frac{5}{14}\)
a)Đặt A=Tổng trên, ta có:
\(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(2A=2+1+...+\frac{1}{2^{99}}\)
\(2A-A=\left(2+1+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(A=2-\frac{1}{2^{100}}\)
b)có đứa làm rồi
c)Đặt C=Tổng trên
\(3C=3\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{300}}\right)\)
\(3C=1+\frac{1}{3}+...+\frac{1}{3^{299}}\)
\(3C-C=\left(1+\frac{1}{3}+...+\frac{1}{3^{299}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{300}}\right)\)
\(2C=1-\frac{1}{3^{300}}\)
\(C=\frac{1-\frac{1}{3^{300}}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{11}}{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}+\frac{\frac{1}{4}-\frac{1}{5}+\frac{1}{7}}{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}+\frac{1\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}\right)}{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}\right)}\)
\(=\frac{2}{3}+\frac{1}{3}\)
\(=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\frac{5\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}{-4\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}:\frac{2\left(\frac{1}{3}-\frac{1}{12}+\frac{3}{7}\right)}{ }\)
MÃu thứ hai sao ý
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)..........\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{2}{3}............\frac{99}{100}\)
\(=\frac{1.2.3.........99}{2.3...........100}\)
\(=\frac{1}{100}\)
Ta có: \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{2}.\frac{2}{3}....\frac{99}{100}\)
=\(\frac{1.2....99}{2.3...100}\)
=\(\frac{1}{100}\)