K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

* Cách dựng

- Dựng A’ đối xứng với A qua tâm O của đường tròn

- Dựng đường thẳng x là trung trực của A’B

- Gọi giao điểm của đường thẳng x và đường tròn (O) là D

- Dựng đường kính COD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

* Chứng minh

Ta có: OA = OA’ và OD = OC

Suy ra tứ giác ACA’D là hình bình hành

Suy ra: AC = A’D

Lại có: A’D = BD (tính chất đường trung trực)

Suy ra: AC = BD

23 tháng 6 2017

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

Biện luận :

Tùy theo số giao điểm của d và đường tròn (O) là 2, 1, 0 mà bài toán có 2, 1, 0 nghiệm hình.

(Trên hình 89, bài toán có 2 nghiệm hình)

18 tháng 11 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

* Phân tích

Giả sử tiếp tuyến AB và AC cần dựng thỏa mãn điều kiện bài toán

Ta có: AB ⊥ OB ⇒  ∠ ABO = 90 °

AC ⊥ OC ⇒  ∠ ACO =  90 °

Tam giác ABO có  ∠ ABO =  90 ° nội tiếp trong đường tròn đường kính AO và tam giác ACO có  ∠ ACO = 90o nội tiếp trong đường tròn đường kính AO.

Suy ra B và C là giao điểm của đường tròn đường kính AO với đường tròn (O).

* Cách dựng

- Dựng I là trung điểm của OA

- Dựng đường tròn (I; IO) cắt đường tròn (O) tại B và C

 

- Nối AB, AC ta được hai tiếp tuyến cần dựng

* Chứng minh

Tam giác ABO nội tiếp trong đường tròn (I) có OA là đường kính nên:  ∠ ABO =  90 °

Suy ra: AB ⊥ OB tại B nên AB là tiếp tuyến của đường tròn (O)

Tam giác ACO nội tiếp trong đường tròn (I) có OA là đường kính nên:  ∠ ACO =  90 °

Suy ra: AC ⊥ OC tại C nên AC là tiếp tuyến của đường tròn (O)

* Biện luận

Luôn dựng được đường tròn tâm I, cắt đường tròn tâm O tại hai điểm B và C và luôn có AB, AC là hai tiếp tuyến của đường tròn (O).

1 tháng 8 2023

a

Theo giả thiết có:

`AB=AC`

`OB=OC`

=> AO là đường trung trực của đoạn BC

=> AO⊥BC

b

Ta có:

`OB=OC=R`

Gọi điểm giao nhau của BC và OA là H có:

`HB=HC`

Từ trên suy ra: HO là đường trung bình của ΔCDB

=> HO//BD

=> OA//BD (H nằm trên đoạn OA)

 

1 tháng 8 2023

c

AB là tiếp tuyến đường tròn.

=> OB⊥AB

Lại có: BH⊥OA (cmt)

Áp dụng hệ thức lượng vào tam giác OAB vuông tại B, đường cao BH có:

\(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{OB^2}\\ \Leftrightarrow\dfrac{1}{BH^2}=\dfrac{1}{8^2}+\dfrac{1}{6^2}\\ \Rightarrow BH=\sqrt{1:\left(\dfrac{1}{8^2}+\dfrac{1}{6^2}\right)}=\dfrac{24}{5}=4,8\left(cm\right)\)

\(BC=2BH\left(BH=HC\right)\\ \Rightarrow BC=2.4,8=9,6\left(cm\right)\)

11 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác ACD, ta có :

B là trung điểm của AC (gt)

O là trung điểm của CD

Nên OB là đường trung bình của ∆ACD

Suy ra : OB = (1/2).AD (tính chất đường trung bình của tam giác)

Vậy AD = 2.OB = 2.2 = 4 (cm)

24 tháng 6 2017

Các dấu hiệu nhận biết tiếp tuyến của đường tròn

AB vuông góc OB tại B nên AB là tiếp tuyến của đường tròn (O). Tương tự, AC là tiếp tuyến của đường tròn (O)