K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:
Áp dụng BĐT Cô-si cho 2 số dương:

$x^2+(x+y)^2\geq 2x(x+y)\Rightarrow \frac{x^2}{x^2+(x+y)^2}\leq \frac{x^2}{2x(x+y)}=\frac{x}{2(x+y)}$

$y^2+(x+y)^2\geq 2y(x+y)\Rightarrow \frac{y^2}{y^2+(x+y)^2}\leq \frac{y^2}{2y(x+y)}=\frac{y}{2(x+y)}$

Cộng theo vế:

$\frac{x^2}{x^2+(x+y)^2}+\frac{y^2}{y^2+(x+y)^2}\leq \frac{x+y}{2(x+y)}=\frac{1}{2}$

Dấu "=" xảy ra khi $x^2=(x+y)^2=y^2$ (điều này vô lý với $x,y>0$)

Do đó dấu "=" không xảy ra, hay $\frac{x^2}{x^2+(x+y)^2}+\frac{y^2}{y^2+(x+y)^2}<\frac{1}{2}$ (đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Bạn nên viết đề bằng công thức toán để mọi người theo dõi dễ hơn (biểu tượng $\sum$ góc trái khung soạn thảo)

NV
22 tháng 3 2021

BĐT cần chứng minh tương đương:

\(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

22 tháng 3 2021

Ta có bất đẳng thức $a^2+b^2 \geq \dfrac{(a+b)^2}{2}

$⇔2.(a^2+b^2) \geq (a+b)^2$

$⇔(a-b)^2 \geq 0$ (đúng)

Áp dụng bất đẳng thức trên cho $\dfrac{x}{y}$ và $\dfrac{y}{x}$ có:

$\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} $

$\geq \dfrac{(\dfrac{x}{y}+\dfrac{y}{x})^2}{2}$

Hay $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})^2$

Áp dụng bất đẳng thức Cauchy (Cô-si) có:

$\dfrac{x}{y}+\dfrac{y}{x} \geq 2.\sqrt[]{\dfrac{x}{y}.\dfrac{y}{x}}=2$

Nên $(\dfrac{x}{y}+\dfrac{y}{x}).(\dfrac{x}{y}+\dfrac{y}{x}) \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$

Hay $ (\dfrac{x}{y}+\dfrac{y}{x})^2  \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$

Suy ra $2.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq 2.(\dfrac{x}{y}+\dfrac{y}{x})$

Hay $\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \geq (\dfrac{x}{y}+\dfrac{y}{x})(đpcm)$

Dấu $=$ xảy ra $⇔x=y$

NV
13 tháng 7 2021

\(x^2+y^2-z^2>0\Rightarrow x^2+2xy+y^2-z^2>0\)

\(\Rightarrow\left(x+y\right)^2-z^2>0\)

\(\Rightarrow\left(x+y-z\right)\left(x+y+z\right)>0\)

Mà x;y;z>0 \(\Rightarrow x+y+z>0\)

\(\Rightarrow x+y-z>0\)

5 tháng 4 2020

Ta có: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

+) TH1: x + y + z = 0 => x + y = -z ; x + z = -y; y + z = -x

Do đó: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x}{-x}+\frac{y}{-y}=\frac{z}{-z}=-3\)\(\ne1\)loại

+) TH2: x + y + z \(\ne0\)

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

<=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)

<=> \(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)

<=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)( đpcm)

8 tháng 6 2016

theo mik hình như  ở vế trái phải là x^3/y^2 chứ

6 tháng 6 2018

a) Mình làm lại , mk thiếu dấu

Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)

Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

x + y + z ≥ xy + yz + zx

⇔ x + y + z - xy - yz - xz ≥ 0 ( *)

Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)

Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)

Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :

( x - 1)( y - 1)( z - 1) ≤ 0

⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0

⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)

Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)

Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)

Từ ( * ; **) ⇒ đpcm

6 tháng 6 2018

j mà lắm bài thế :D

1 tháng 6 2018

Sửa đề: \(Cho\)\(x;y>0.\)\(CMR:\)\(\left(x+y\right)^2+\frac{x+y}{2}\ge2x\sqrt{y}+2y\sqrt{x}\)

Ta có: \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow2\left(x+y\right)\ge x+2\sqrt{xy}+y\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{4}\)                                                     \(\left(1\right)\)

Lại có: \(\left(x+y\right)^2\ge4xy\)                                                                 \(\left(2\right)\)

Từ (1) và (2) suy ra 

\(VT\ge4xy+\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{4}\ge2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=2x\sqrt{y}+2y\sqrt{x}\)               ( BĐT AM-GM)

2 tháng 6 2018

Bạn ơi đề khôg sai nhá nếu là dấu cộng thì ai chả làm đc đây là dấu nhân nhá