a) (x-5)4 = (x-5)6
b) x2006 = x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=4
=>x+1=5
A=(x+1)x^5 -(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-1
=x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+1
=x^6-x-1
=4^6-4-1
=4091
\(a,A=5\cdot4^5-5\cdot4^4+5\cdot4^3-5\cdot4^2+5\cdot4+1\\ A=4^4\left(20-5\right)+4^2\left(20-5\right)+\left(20-5\right)\\ A=15\left(4^4+4^2+1\right)=15\cdot273=4095\)
\(b,x=7\Leftrightarrow x+1=8\\ \Leftrightarrow B=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\\ B=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\\ B=-x-5=-12\)
a) A=(x-4)2+ |y-1|-6
Ta thấy:
(x-4)² ≥ 0 ∀ x
|y-1| ≥ 0 ∀ y
⇒ (x-4)2+ |y-1| ≥ 0 ∀ x, y
⇒ (x-4)2+ |y-1|-6 ≥ -6 ∀ x, y
⇒ A ≥ -6 ∀ x, y
Dấu '=' xảy ra khi: \(\left[{}\begin{matrix}x-4=0\\y-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)
Vậy Min A = -6 tại x=4, y = 1
b) B= (x2-1)4+2.|2y-4|-3
Ta thấy:
(x2-1)4 ≥ 0 ∀ x
|2y-4| ≥ 0 ∀ y
⇒ 2|2y-4| ≥ 0 ∀ y
⇒ (x2-1)4+2.|2y-4| ≥ 0 ∀ x, y
⇒ (x2-1)4+2.|2y-4|-3 ≥ -3 ∀ x, y
⇒B ≥ -3 ∀ x, yDấu '=' xảy ra ra khi: \(\left[{}\begin{matrix}x^2-1=0\\2y-4=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x^2=1\\2y=4\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\pm1\\y=2\end{matrix}\right.\)Vậy Min B = -3 tại x=\(\pm\)1, y = 2
\(x\left(5-6x\right)+\left(2x-1\right)\left(3x+\text{4}\right)=6\\ \Leftrightarrow5x-6x^2+6x^2+8x-3x-4=6\)
\(\Leftrightarrow10x-4=6\)
\(\Leftrightarrow10x=6+4\\ \Leftrightarrow10x=10\\ \Leftrightarrow x=\dfrac{10}{10}\)
\(\Leftrightarrow x=1\)
\(x^2\left(x-2021\right)-x+2021=0\)
\(\Leftrightarrow x^2\left(x-2021\right)-(x-2021)=0\)
\(\Leftrightarrow\left(x-2021\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-2021\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2021=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=1\\x=-1\end{matrix}\right.\)
a: =>x+7/4=6:2/3=9
=>x=29/4
b: =>x:5/3=7/5
=>x=7/5*5/3=7/3
c:=>x+1/6=5/3
=>x=10/6-1/6=3/2
d: =>x+4/5=4/5+3/7+3/5
=>x=3/7+3/5=36/35
e: =>x/35=4/5-5/7=3/35
=>x=3
f: =>13/28+x=1/2
=>x=1/28
g: =>1/3-x=1/9
=>x=2/9
a: \(\Leftrightarrow2x^2+6x-x^2-2x+x+2-x^2-6=0\)
=>5x-4=0
hay x=4/5
b: \(\Leftrightarrow\left(x-5\right)\left(x+x+3\right)=0\)
=>(x-5)(2x+3)=0
=>x=5 hoặc x=-3/2
a) \(2x\left(x+3\right)-\left(x-1\right)\left(x+2\right)=x^2+6\)
\(2x^2+6x-\left(x^2+2x-x-2\right)=x^2+6\)
\(x^2+5x+2=x^2+6\)
\(x^2+5x+2-x^2-6=0\)
\(5x-4=0\)
\(x=\dfrac{4}{5}\)
b) \(x\left(x-5\right)+\left(x-5\right)\left(x+3\right)=0\)
\(\left(x-5\right)\left(x+x+3\right)=0\)
\(\left(x-5\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(x-y=4\Rightarrow\left(x-y\right)^2=16\Rightarrow P=x^2+y^2=16+2xy=16+2.5=26\)
Chọn B
\(x=7\Rightarrow8=x+1\left(1\right)\)
Thay \(1\) vào \(F\) ta có:
\(F=x^{2006}-\left(x+1\right)^{2005}+\left(x+1\right)^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\)
\(F=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\)
\(F=-7-5\)
\(\Rightarrow F=-12\)
Ta co
A=2007^2006( lên lơp 6 e se hoc)
=>A=2007^2 x 2007^2004
=>(...9)x(...1)=(...9) (1)
Ta co:
B=2006^2007=(...6)
a: \(x-\dfrac{1}{24}=-\dfrac{1}{8}+\dfrac{5}{6}\)
=>\(x-\dfrac{1}{24}=\dfrac{-3}{24}+\dfrac{20}{24}=\dfrac{17}{24}\)
=>\(x=\dfrac{17}{24}+\dfrac{1}{24}=\dfrac{18}{24}=\dfrac{3}{4}\)
b: \(\dfrac{5}{8}-x=\dfrac{1}{9}-\left(-\dfrac{5}{4}\right)\)
=>\(\dfrac{5}{8}-x=\dfrac{1}{9}+\dfrac{5}{4}=\dfrac{4+45}{36}=\dfrac{49}{36}\)
=>\(x=\dfrac{5}{8}-\dfrac{49}{36}=\dfrac{45}{72}-\dfrac{98}{72}=\dfrac{-53}{72}\)
c: \(\dfrac{5}{9}+\dfrac{x}{-1}=-\dfrac{1}{3}\)
=>\(\dfrac{5}{9}-x=-\dfrac{1}{3}\)
=>\(x=\dfrac{5}{9}+\dfrac{1}{3}=\dfrac{8}{9}\)
a: =>x=-7/6+5/8=-13/24
b: =>x=-14/25-3/4=-131/100
c: \(x=\dfrac{-33}{26}:\dfrac{-9}{13}=\dfrac{33}{26}\cdot\dfrac{13}{9}=\dfrac{11}{3}\cdot\dfrac{1}{2}=\dfrac{11}{6}\)
d: \(x=\dfrac{4}{9}:\dfrac{5}{3}=\dfrac{4}{9}\cdot\dfrac{3}{5}=\dfrac{12}{45}=\dfrac{4}{15}\)
a)Ta có:04=06
14=16
(-1)4=(-1)6
=>x-5 E {-1;0;1}
=>x E {4;5;6}
b)Ta có: 02006=02
12006=12
(-1)2006=(-1)2
=>x E {-1;'0;1}
a) (x-5)4 = (x-5)6
=>(x-5)4 - (x-5)6=0
=>(x-5)4[1-(x-5)2]=0
=>(x-5)4[1-x2+10x-25]=0
=>(x-5)4[6x-24+4x-x2]=0
=>(x-5)4[6(x-4)-x(x-4)]=0
=>(x-5)4(6-x)(x-4)=0
=>(x-5)4=0 hoặc 6-x=0 hoặc x-=0
=>x=5 hoặc x=6 hoặc x=4
b)x2006=x2
=>x2006-x2=0
=>x2(x2004-1)=0
=>x2=0 hoặc x2004-1=0
=>x=0 hoặc x=1 hoặc -1