giải chi tiết giúp toi nha:>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : \(\frac{3}{7\cdot9}+\frac{3}{9\cdot11}+\frac{3}{11\cdot13}+...+\frac{3}{57\cdot59}\)
\(=\frac{3}{2}\left[\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+...+\frac{2}{57\cdot59}\right]\)
\(=\frac{3}{2}\left[\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{57}-\frac{1}{59}\right]\)
\(=\frac{3}{2}\left[\frac{1}{7}-\frac{1}{59}\right]=\frac{78}{413}\)
P/S : Thi gặp dạng này thì dễ rồi -_-
\(\frac{3}{7.9}+\frac{3}{9.11}+\frac{3}{11.13}+...+\frac{3}{57.59}\)
\(=\frac{3}{2}.\left(\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+...+\frac{2}{57.59}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{57}-\frac{1}{59}\right)\)
\(=\frac{3}{2}.\left[\frac{1}{7}+\left(\frac{1}{9}-\frac{1}{9}\right)+\left(\frac{1}{11}-\frac{1}{11}\right)+\left(\frac{1}{13}-\frac{1}{13}\right)+...+\left(\frac{1}{57}-\frac{1}{57}\right)-\frac{1}{59}\right]\)
\(=\frac{3}{2}.\left[\frac{1}{7}-\frac{1}{59}\right]\)
\(=\frac{3}{2}.\frac{52}{413}=\frac{78}{413}\)
đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{189}{760}\)
Đặt \(B=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+...+\frac{3}{19}-\frac{3}{20}\)
\(=3-\frac{3}{20}=\frac{57}{20}\)
\(D=A-B=\frac{189}{760}-\frac{57}{20}=-\frac{1977}{760}\)
Gọi \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)là A
\(\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)là B
\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(1-\frac{1}{20}\right)\right]\)
\(A=\frac{1}{2}.\frac{19}{20}\)
\(A=\frac{19}{40}\)
\(B=\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)
\(B=\left(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}\right)\)
\(B=\left[3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)\right]\)
\(B=\left[3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)
\(B=\left[3.\left(\frac{19}{20}\right)\right]\)
\(B=\frac{57}{20}\)
Vậy A - B = \(\frac{19}{40}-\frac{57}{20}\)
\(=-\frac{95}{40}=-\frac{19}{8}\)
Nếu đúng thì k nha
\(I=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2009.2010}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2010}\\ =1-\dfrac{1}{2010}\\ =\dfrac{2009}{2010}\)
\(K=\dfrac{4}{2.4}+\dfrac{4}{4.6}+...+\dfrac{4}{2008.2010}\\ =2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2008.2010}\right)\\ =2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\\ =2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\\ =2.\dfrac{502}{1005}\\ =\dfrac{1004}{1005}\)
\(F=\dfrac{1}{18}+\dfrac{1}{54}+...+\dfrac{1}{990}\\ =\dfrac{1}{3.6}+\dfrac{1}{6.9}+...+\dfrac{1}{30.33}\\ =\dfrac{1}{3}\left(\dfrac{3}{3.6}+\dfrac{3}{6.9}+...+\dfrac{3}{30.33}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)\\ =\dfrac{1}{3}.\dfrac{10}{33}\\ =\dfrac{10}{99}\)
\(I=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}=\dfrac{2010-1}{2010}=\dfrac{2008}{2010}\)
\(K=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}=\dfrac{502}{1005}\)
\(F=\dfrac{1}{3.6}+\dfrac{1}{6.9}+...+\dfrac{1}{99.100}=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{100}\right)=\dfrac{97}{900}\)
Kẻ OM vuông óc với CD
Vì CD là 1 dây của (O)
=> M là trung điểm của CD
=> MC = MD
Có: AH // BK (cùng vuông góc với CD)
=> AHKB là Hình thang
Lại có: OM vuông góc với CD; O là trung điểm của AB
=> M là trung điểm của HK
=> MH = MK
Có: \(\left\{{}\begin{matrix}HD+MD=HM\\MC+CK=MK\end{matrix}\right.\)
Mà: MH = MK (cmt) và MD = MC (cmt)
=> HD = CK
b: Phương trình hoành độ giao điểm của \(\left(d1\right),\left(d2\right)\) là:
2x=-x+3
\(\Leftrightarrow3x=3\)
hay x=1
Thay x=1 vào y=2x, ta được:
\(y=2\cdot1=2\)
Vậy: \(A\left(1;2\right)\)
Thay y=0 vào \(\left(d2\right)\), ta được:
\(-x+3=0\)
hay x=3
Vậy: \(B\left(3;0\right)\)
\(AB=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(OA=\sqrt{\left(0-1\right)^2+\left(0-2\right)^2}=\sqrt{5}\)
\(OB=\sqrt{\left(0-3\right)^2}=3\)
\(P=\dfrac{AB+OA+AB}{2}=\dfrac{3+2\sqrt{2}+\sqrt{5}}{2}\)
\(S=\sqrt{P\cdot\left(P-OA\right)\left(P-OB\right)\left(P-AB\right)}=3\left(đvdt\right)\)
tham khảo: