một ca nô xuôi dòng từ a đến b nghỉ tại bến b 20 phút rồi ngược dòng từ bến b đến bến a hết 3 giờ biết khoảng cách từ b là 15km tính vận tốc của ca nô khi nước yên lặng , biết vận tốc của dòng nước là 3km/h
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc cano khi mặt nước yên lặng là x (km/h) (x>3)
Ta có : Vận tốc cano khi xuôi dòng là : x + 3 (km/h)
Vận tốc cano khi ngược dòng là : x - 3 (km/h)
Phương trình : \(\frac{15}{x+3}+\frac{20}{60}+\frac{15}{x-3}=3\)
\(\Leftrightarrow\frac{1}{x+3}+\frac{1}{x-3}=\frac{8}{45}\)
Giải phương trình trên ta được x = 12 (vì x>0)
Vậy : Vận tốc cano khi nước yên lặng là 12 km/h
Lời giải:
Vận tốc nước xuôi dòng: $24,3+2,7=27$ (km/h)
Vận tốc nước ngược dòng: $24,3-2,7=21,6$ (km/h)
Tổng thời gian đi và về:
14 giờ 45 phút - 6 giờ 30 phút - 2 giờ 15 phút = 6 giờ.
Ta có:
$AB:27+AB:21,6=6$
$AB\times \frac{1}{27}+AB\times \frac{1}{21,6}=6$
$AB\times \frac{1}{12}=6$
$AB=6\times 12$
$AB=72$ (km)
Thời gian xuôi dòng: $72:27=\frac{8}{3}$ (giờ) hay 2 giờ 40 phút
Thời gian người dòng: 6 giờ - 2 giờ 40 phút = 3 giờ 20 phút
Gọi vận tốc ca nô là x (km;x>2)
Đổi 3h30'=2,5h
Theo dữ kiện thứ nhất ta có phương trình : (x+2)*3,5
Theo dữ kiện thứ hai ta có phương trình (x-2)*4
mà ca nô đi trên cùng đoạn đường AB
⇒⇒(x+2)3,5=(x−2)⋅4(x+2)3,5=(x−2)⋅4
⇔3,5x+7=4x−8⇔3,5x+7=4x−8
⇔3,5x−4x=−8−7⇔3,5x−4x=−8−7
⇔−0,5x=−15⇔x=30⇔−0,5x=−15⇔x=30 (TM x>2)
Vậy.............................
Bài 2:
Gọi vận tốc cano là x
Vận tốc cano khi đi là x+3
Vận tốc cano khi về là x-3
Theo đề, ta có: 15/x+3+15/x-3=3-1/3=8/3
=>(15x-45+15x+45)/(x^2-9)=8/3
=>8x^2-72=3*30x=90x
=>8x^2-90x-72=0
=>x=12
1:
Gọi vận tốc cano là x
=>Vận tốc lúc đi là x+4, vận tốc lúc về là x-4
Theo đề, ta co: 30/x-4-30/x+4=1
=>(30x+120-30x+120)/(x^2-16)=1
=>x^2-16=240
=>x^2=256
=>x=16
Gọi vận tốc thực của cano là x>3 (km/h)
Vận tốc khi xuôi dòng: x+3x+3 km/h
Vận tốc khi ngược dòng: x−3x−3 (km/h)
Thời gian xuôi dòng: 15x+315x+3
Thời gian ngược dòng: 15x−315x−3
Ta có pt:
15x+3+15x−3+13=315x+3+15x−3+13=3
⇒x=12