tìm n để n+7\3n-1 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: \(2n+1⋮n+2\)
\(\Leftrightarrow2n+4-3⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
b: Để B là số nguyên thì \(n+3⋮n-2\)
\(\Leftrightarrow n-2+5⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
c: Để C là số nguyên thì \(3n+7⋮n-1\)
\(\Leftrightarrow3n-3+10⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
![](https://rs.olm.vn/images/avt/0.png?1311)
n+7/3n-1=n/3n-1+7/3n-1 là số nguyên thì 7/3n-1 laf số nguyên
suy ra 3n-1<hoặc= 7