tính nhanh : 1 + [1 +2 ] + [1 +2 +3 ] + [1 + 2 +3 +4 ] + .... + [1 + 2 +3 +4 +.....+100 ]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)
\(=6,3.1,2-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.1,2-6,3.1,2\)
\(=0\)
\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)
\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(=3\left(\frac{1}{\frac{1\cdot2}{2}}+\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+...+\frac{1}{\frac{100\cdot101}{2}}\right)\)
\(=3\left(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+...+\frac{2}{100\cdot101}\right)\)
\(=6\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\right)\)
\(=6\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6\left(1-\frac{1}{101}\right)=6-\frac{6}{101}=\frac{606-6}{101}=\frac{600}{101}\)
3/1 + 3/1+2 + 3/1+2+3 + 3/1+2+3+4 + ... + 3/1+2+3+4+...+100
= 3 × (1/0+1 + 1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/1+2+3+4+...+100)
= 3 × (1/(1+0)×2:2 + 1/(1+2)×2:2 + 1/(1+3)×3:2 + 1/(1+4)×4:2 + ... + 1/(1+100)×100:2)
= 3 × (2/1×2 + 2/2×3 + 2/3×4 + 2/4×5 + ... + 2/100×101)
= 3 × 2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/100×101)
= 6 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/100 - 1/101)
= 6 × (1 - 1/100)
= 6 × 100/101
= 600/101
\(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
Để í ngoặc \(\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]\)
\(\Leftrightarrow\left[\frac{6}{7}+-\frac{6}{7}\right]\)
\(\Leftrightarrow0\)
Vậy biểu thức \(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)có giá trị bằng 0