K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề sai

8 tháng 8 2017

Đề đúng rồi,  - -

28 tháng 8 2017

ta co \(\frac{a}{1+b^2c}=\frac{a\left(1+b^2c\right)-ab^2c}{1+b^2c}=a-\frac{ab^2c}{1+b^2c}\ge a-\frac{ab\sqrt{c}}{2}\)

=>\(\frac{a}{1+b^2c}\ge a-\frac{b\sqrt{a.ac}}{2}\ge a-\frac{b\left(a+ac\right)}{4}\)

cmtt=>dpcm

10 tháng 1 2019

Đề sai nhé mọi người , đầu tiên tưởng đề đúng nhưng ko phải 

Lấy VT - VP

Phân tích ta được (a-b)(b-c)(c-a) < 0 nhé !

11 tháng 1 2019

(a - b)(a - c)(b - c) \(\ge\)0 (đúng nhưng dấu = không xảy ra.

áp dụng cái này: 
a²/x + b²/y + c²/z +d²/t ≥ (a + b +c +d)²/(x + y + z + t) (wen thuộc) 
1/a + 1/b + 1/b + 1/c ≥ 16/(a + 2b +c) 
1/a + 1/b + 1/c + 1/c ≥ 16/(a + b +2c) 
1/a + 1/a + 1/b + 1/c ≥ 16/(2a + b +c) 
Cộng 3 vế lại: 
1/a + 1/b +1/c ≥ 4[1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)] 
⇔ ¼ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b) 
⇒ ½ (1/a + 1/b +1/c) ≥ ¼ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b) 
⇔ ½ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b) 
Dấu = xra khi a = b = c và 1/a + 1/b +1/c = 0 
⇒ dấu = không xảy ra. 
⇒ ½ (1/a + 1/b +1/c) > 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b) 

23 tháng 8 2015

Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em

Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html

Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có

\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)

\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)

Vậy ta có điều phải chứng minh.

Câu 2.  Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz

\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)

Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\)\(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)

Cộng ba bất đẳng thức lại ta được

\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\)    (ĐPCM).